

THERMOCOUPLE & RESISTANCE THERMOMETERSENSORS & PROBES

Acez Sensing Pte Ltd

Blk 28E Penjuru Close #01-04 Singapore 609133 Tel: (65) 6265 1588 Fax: (65) 6264 3992 Email: sales@acezsensing.com Website: www.acezsensing.com Ecommerce: www.acezonline.com

When you have a technical problem or question about thermocouples, RTDs, or temperature measurement, give us a call. You'll speak with an experienced technician with a wide knowledge of the field. In addition to a complete line of temperature sensors, we build more "specials" and service a greater variety of industries than any of the thermocouple manufacturer. In fact, chances are excellent as we have already solved a problem similar to yours. We'll be happy to tell you about our experience and discuss possible solutions without any obligations.

Many larger thermocouple manufacturers would rather not be bothered with "specials". They want large volume orders. So 'specials" go to the bottom of the pile and delivery and communication with the customer are usually very poor.

Of course, we like large orders as much as the next company. But what sets us apart is our enthusiasm about solving problems for our customers, big and small. You can depend on our temperature sensors to provide the temperature measurement and control solutions you need. Acez Sensing thermocouples and thermocouple wire meet accuracy standards as defined by the many technical societies and manufacturers.

Selected grade thermocouple wire can be supplied in instances where special or standard grade material does not provide the accuracy needed at specific temperatures. The availability of this grade depends on your specific requirements and stock levels.

Calibration of thermocouples or thermocouple wire is a laboratory test performed on a specific product or lot to determine its departure from a defined temperature - E.M.F. relationship. ASTM E 230 (ITS 90) describes the relationship for the various thermocouple types, portions of which can be found in Acez Sensing's Technical Reference Information booklet, available on request. Calibrations are conducted following the general guidelines of ASTM E 220. Test results are reported in certificate form indicating test temperatures, °F or °C corrections and standards traceable data.

Each product tested can be tagged with a test number, date and correction data. Pricing for calibration and testing is based on tests selected, quantity to be tested, and number of test temperatues. Test temperatures within the range of $0^{\circ}C$ ($32^{\circ}F$) to $1371^{\circ}C$ ($2500^{\circ}F$) are available at competitive pricing. Sub-zero checking and high temperature (above $1371^{\circ}C$) are available on special quotation only.

Acez sensing is using mineral Insulated thermocouple. It is a departure from the traditional assembly of tubes, wires and insulators. It has a mineral Insulation with thermal response, greater flexibility, size for size, and is longer lasting than no replacement parts and has improved traditional types.

THERMOCOUPLE

Thermocouples essentially comprise a thermoelement (a junction of two specified dissimilar metals) and an appropriate two wire extension lead. A thermocouple operates on the basis of the junction located in the process producing a small voltage which increases with temperature. It does so on a reasonably stable and repeatable basis.

Measuring Junction Typical Response Time

Sheath OD	Measuring Junction	Response Time*
Ø 063 (1/16″)	Grounded	.09
	Ungrounded	.28
Ø .125 (1/8″)	Grounded	.34
	Ungrounded	1.6
Ø .188 (3/16")	Grounded	.7
	Ungrounded	2.6
Ø .250 (1/4")	Grounded	1.7
	Ungrounded	4.5
	Exposed loop	.09

*Sensors not in thermowell or protection tubes

DIFFERENT THERMOCOUPLE TYPES

Calibration Selection Guide

Calibration	Condu	ctors	Temperature Range	Limits o	f Error	Extension Wire	Color Coding
Туре	Positive	Negative	°C	Standard	Special	Jacket Color	(ANSI STD)
J	lron (Magnetic)	Constantan (Non-magnetic)	0°C to 750°C	±2.2°C or ±0.75%	±1.1°C or ±0.4%	Black	White+ Red-
К	Chromel (Non-magnetic)	Alumel (Magnetic)	-200°C to 0°C 0°C to 1250°C	±2.2°C or ±2% ±2.2°C or ±0.75%	 ±1.1°C or ±0.4%	Yellow	Yellow+ Red-
Т	Copper (Non-Magnetic)	Constantan (Non-magnetic)	-200°C to 0°C 0°C to 350°C	±1°C or ±.1.5% ±1°C or ±0.75%	_ or ±0.4%	Blue	Blue+ Red-
E	Chromel (Non-magnetic)	Constantan (Non-magnetic)	-200°C to 0°C 0°C to 900°C	±1.7°C or ±1% ±1.7°C or ±0.5%	 ±1°C or ±0.4%	Purple	Purple+ Red-
Ν	Nicrosil (Non-magnetic)	Nisil (Non-magnetic)	0°C to 1260°C	±3/4%	±3/8%	Orange	Orange+ Red-
R	Platinum 13% Rhodium (Non-magnetic)	Pure Platinum (Non-magnetic)	0°C to 1450°C	±1.5°C or ±0.25%	N/A N/A	Green	Black+ Red-
S	Platinum 10% Rhodium (Non-magnetic)	10% Rhodium (Non-magnetic)		±1.5°C or ±0.25%	N/A N/A	Green	Black+ Red-
В	Platinum 30% Rhodium (Non-magnetic)	Platinum 6% Rhodium (Non-magnetic)	870°C to 1700°C	±0.5%	N/A N/A	Gray	Gray+ Red-

Calibration Notes

J- Iron Constantan - Reducing atmosphere recommended. Iron oxidizes rapidly at elevated temperatures. A larger gauge size will extend the life of the iron wire. T- Copper Constantan - Can be used in oxidizing or reducing atmospheres. Rust and corrosion resistant. Best for sub-zero temperatures.

K- Chromel Alumel - Oxidizing atmosphere recommended. Most commonly used base metal thermocouple. Cycling at high temperatures can cause calibration drift. Not recommended in sulfur environments. **E- Chromel Constantan** - Oxidizing atmosphere recommended. Highest EMF output of thermocouples commonly used. Good corrosion resistance

S, R- Use in oxidizing or inert atmospheres. Not recommended for reducing atmospheres. Granular precipitation from metal protection tubes can cause failure or calibration drift.
 N- Use in oxidizing, reducing and inert atmospheres. Not recommended in sulfur environments. Improved resistance to drift and better stability over K and E at elevated temperatures.

Thermocouple Type	Sensivity
Туре Ј	55μV / °C
Туре К	41µV / °C
Туре Т	42μV / °C
Type E	68µV / °С
Туре N	39µV / °C
Type R	6 -14µV / °C
Type S	6 -12μV / °C
Туре В	6 -14µV / °C

THERMOCOUPLE CONSTRUCTION

Many alternative configurations exist for thermocouple assemblies; basically two general types of construction describe most industrial thermocouples – fabricated and mineral insulated.

Fabricated Thermocouples are assembled using insulated thermocouples wires, sheathing (usually stainless steel) and some form of termination (extension lead, connecting head or connector for example).

Fig 10: Fabricated Thermocouple

Insulated, Twisted Pair Thermocouple inside Stainless Steel Sheath.

Measuring junction earthed in this example.

Mineral Insulated Thermocouples consist of thermocouple wire embedded in a densely packed refractory oxide powder insulant all enclosed in a seamless, drawn metal sheath (usually stainless steel).

Thermocouple wire insulated by compressed mineral oxide powder.

Insulated measuring junction shown in this example.

Effectively, the thermoelement, insulation and sheath are combined as a flexible cable which is available in different diameters, usually from 0.5mm to 8mm.

At one end, the cores and sheath are welded to form a "hot" junction. At the other end, the thermocouple is connected to a "transition" of extension wires, connecting head or connector.

Advantages of Mineral Insulated Thermocouples are:

- a) Small overall dimension and high flexibility which enable temperature measurement in locations with poor accessibility.
- b) Good mechanical strength.
- c) Protection of the thermoelement wires against oxidation, corrosion and contamination.
- d) Fast thermal response.

The mineral oxides used for insulation are highly hygroscopic and open ended cable must be effectively sealed (usually with epoxy resins) to prevent moisture take-up. A carefully prepared mineral insulated thermocouple will normally have a high value of insulation resistance (many hundreds of MOhms).

MEASURING JUNCTION

Grounded Junction - The sheath and the thermocouple wires are welded together, forming a completely closed measuring junction. Recommended in the presence of liquids, moisture, gas or high pressure. The thermocouple is protected from the environment. Response time approaches that of an exposed juntion.

Ungrounded Junction - The thermocouple junction is insulated from the welded measuring junction closure. Recommended for applications where stray EMFs could affect the instrument reading and for frequent/rapid temperature cycling. Response time is slower than a grounded junction.

Exposed Junction - The thermocouple junction is not protected by a welded closure. Insulation is sealed against liquid or gas penetration. Provides fastest response time. Not recommended for applications that are corrosive.

Thermocouple Construction Materials

The most basic thermocouple construction is the wire type consisting of two dissimilar metals homogeneously joined at one end to form the measuring junction. All wire-type thermocouples have an exposed junction. While wire-type thermocouples offer good response time, ruggedness, and high temperature use, they are susceptible to environmental conditions and therefore must be protected.

Mineral insulated thermocouples overcome the disadvantages of wire type construction by imbedding the thermocouple wires in ceramic insulation and protecting them with a metallic sheath. The mineral insulated cable (MI cable) design is based on small mass and high thermal conductivity which in turn promotes rapid heat transfer from the heat source to the measuring junction.

The sheaths are impervious to most liquids and gases and withstand high external pressures. The seamless design protects against moisture or other contaminants attacking the thermocouple elements. Since the only materials used to make the MI cable are the thermocouple conductors, the mineral oxide insulation and the metallic sheath, the cables are inherently fireproof thus providing the safest temperature measuring system.

Mineral Insulated Cable

M.I. cable is designed to meet the following specifications:

Sheath OD & Wall Thickness: Per ASTME-585 Accuracy: Per ASTME-230 (1993) & IEC 584-2 : 1982 Insulation Resistance@Room Temperature: Per ASTME-585 Formability: Per ASTME-585 (Can be formed around a mandrel equal to twice the outside diameter without sheath rupture or loss of IR.)

Fabrication: The cable can be welded, brazed or soldered without changing IR. (Care should be taken with smaller diameter sheaths)

Sheath Material

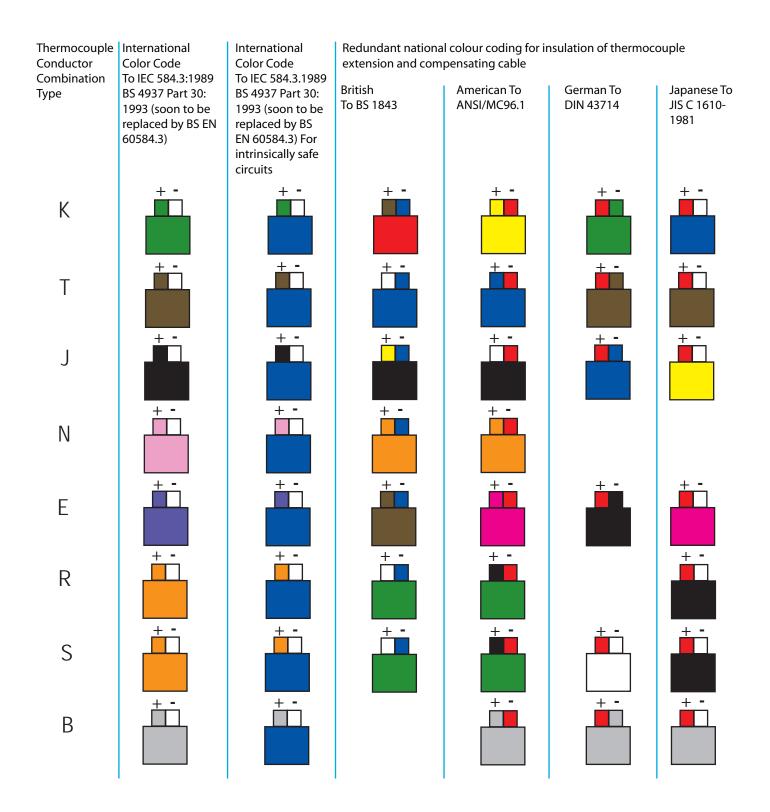
The table below shows just some of the many different materials which can be used to protect the mineral insulated thermocouple. Sheath materials used vary from standard stainless alloys like 304, 310, 316, 321, 347, 446 to the slightly more exotic alloy 600 or Hasteloy®.

These sheaths are selected based on the rigors of the application with corrosion and temperature being the leading factors in sheath selection. The atmospheric environmental parameters are oxidizing, reducing, neutral, and vacuum. For example, 304 Stainless Steel can be used in each type of atmosphere with a maximum operating temperature of 1650°F.

			Recomn	nended	
Material	Melting Point °F	Max. Temp. in Air	OPR ATM *	Continuous Max. Temp. °F	
304SS	2560	1920	ORNV	1650	
310SS	2560	1960	ORNV	2100	
316SS	2280	1760	ORNV	1650	
321 SS	2580	1500	ORNV	1600	
347SS	2600	1680	ORNV	1600	
nconel Alloy 600	2550	2000	ONV(c)	2100	
Copper	1980	600	ORNV (b)	600	
Aluminum	1220	800	ORNV	700	
Platinum	3216	3000	ON(c)	3050	
Molybdenum	4750	1000	VNR	4000	
Tantalum	5440	750	V	4500	
Titanium	3300	600	VN	2000	

0 - 0xidizing

R — Reducing N — Neutral


V -- Vacuum

(b)— Scales readily in oxidizing atmosphere

(c) — Sensitive to sulphur corrosion

Thermocouple Extension and Compensating Cables

Extension Cables- Extension cables are manufactured from conductors having the same nominal compositions as those of the corresponding thermocouple. They are designated by a letter X following the designation of the thermocouple, for example "JX" Compensating Cables-Compensating cables are manufactured from conductors having a composition different from the corresponding thermocouple. They are designated by a letter "C" following the designation of the thermocouple, for example "KC" Different alloys maybe used for the same thermocouple type and are distinguished by additional letters, for example, "KCA" and "KCB"

RESISTANCE TEMPERATURE DETECTOR

The temperature scale which is accepted world-wide is called the International Temperature Scale of 1990 (ITS-90) and is the best attempt to reconcile the laws of thermodynamics with the practical world of temperature measurement.

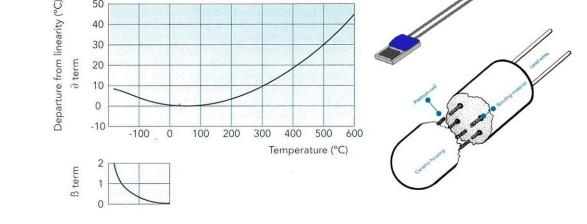
Over the temperature range -200 °C to +850 °C the internationally accepted working standard is the Platinum Resistance Thermometer (PRT).

A consideration of the electric conduction in pure metals, alloys and semiconductors shows that the conduction mechanism is very complex. The basis of our present knowledge is the idea that the free electrons travel through the metal as plane waves modified by a function having the periodicity of the lattice. This disposition is too brief to explain fully the mechanisms, however, the theory suggests that a wire wound platinum resistance thermometer will follow a quadratic of the type RT = Ro (1+At+Bt2)for a wide range of temperature above ambient.

> Usefully, A = Alpha (1 + Delpha/100 °C) B = 10-4 Alpha Delta °C2

Alpha and Delta are characteristic of each thermometer showing respectively the mean slope of the resistance/ temperature curve between 0 °C and 100 °C, and the departure from linearity in the same range.

Alpha is a good indication of purity, and the state of anneal of the thermometer.


50

40 30

Delta depends upon the thermal expansion and the density of states curve near the fermi energy.

Both these quantities depend upon the purity of the wire, and indicate that Delta and Alpha are related. For temperatures below 0 °C, departure from linearity becomes too great for a quadratic equation and so a further term 13 was added in 1925, which was updated in 1968 to a 29-term polynomial.

The table below shows that departure from linearity of a platinum thermometer over temperature range -200 °C to +600 °C.

Industrial PRT are constructed with an alloy comprising of pure platinum alloyed with other platinum group metals to reduce the alpha value to the IEC Publication of 751, 1995 value of 0.003850 or of pure platinum having a alpha value of 0.003916 and above.

Wire wound PRT manufacture use ceramic materials of a very high purity. The processing of the wire into its high purity alumina ceramic is achieved without contamination of the platinum. Special annealing and and tailor design of the vibration/stability properties of the PRT now ensures accuracies and stabilities verging on those achieved by standard PRT's.

THICK FILM, the spreading of a glass/platinum paste through a silk screen onto a substance.

THIN FILM, the evaporation of metal or alloy via a vacuum onto a substrate, usually alumina.

TOLERANCES

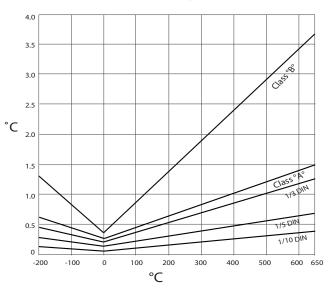
Tolerance values of resistance thermometers are classified as follows:

Tolerance class	Tolerance (O°C)	Tolerance (t°C)
Α	± 0.15	0.15 + 0.002 (t)
В	± 0.30	0.3 + 0.005 (t)
1/3 D IN	± 0.10	1/3[0.3+0.005(t)]
1/5 D IN	± 0.06	1/5[0.3+0.005(t)]
1/10 D IN	± 0.03	1/10[0.3+0.005(t)]

*(t) = modules of temperature in degrees Celcius without regard to sign.

Thermometers of 100 Ω nominal resistance value shall be classified according to degree of conformity with the values of table 1. Class A tolerances shall Ω ot be applied to 100 Ω resistance thermometers at temperatures above 650°C.

					Tole	rance				
Temp	CLA	SS B	CLA	SS A	1/3	DIN*	1/5	DIN*	1/10 DIN*	
°C	±°C	± OHMS	± °C	± OHMS	± °C	± OHMS	± °C	± OHMS	±°C	± OHMS
-200	1.3	0.56	0.55	0.24	0.44	0.19	0.26	0.11	0.13	0.06
-100	0.8	0.32	0.35	0.14	0.27	0.11	0.16	0.06	0.08	0.03
0	0.3	0.12	0.15	0.06	0.1	0.04	0.06	0.02	0.03	0.01
100	0.8	0.3	0.35	0.13	0.27	0.1	0.16	0.05	0.08	0.03
200	1.3	0.48	0.55	0.2	0.44	0.16	0.26	0.1	0.13	0.05
300	1.8	0.64	0.75	0.27	0.6	0.21	0.36	0.13		
400	2.3	0.79	0.95	0.33	0.77	0.26				
500	2.8	0.93	1.15	0.38						
600	3.3	1.06	1.35	0.43						
650	3.6	1.13	1.45	0.46						
700	3.8	1.17								
800	4.3	1.28								
850	4.6	1.34								


Tolerances for Platinum Resistance Detectors to BS EN 60751:1996 / DIN 43760

NOTE

Tolerances are calculated to 2 decimal points and are taken as a fraction of Class B.

* The tabulated values for close tolerance detectors 1/3rd, 1/5th and 1/10th DIN are interpolated and are for guidance only.

Tolerance values as a function of temperature for 100 Ω thermometers

VIBRATION

When correctly supported, units will withstand a minimum vibration level of 30g over the frequency range 10hz to 1Khz. Units from normal production have been subjected to many varied ranges of vibration, and we have in-house ability to test to a Customer's needs should they have any special requirement.

STABILITY

Detectors typically conform to BSEN Stability figures. Drfit of less than $\pm 0.05\%$ of its initial value after ten thermal cycles from 0 °C to 600 °C and from -200 °C to 0 °C. Stability is a compromise between vibration performance and there are various options available.

SELF HEATING

Less than 0.3 °C with 10mW dissipation when tested in a stirred ice bath.

THERMAL RESPONSE TIME

BS EN 60751: 1996 & IEC 751 : 1995

Require that the response time for a 50% change (~0.5) in resistance to a step temperature change be recorded. The normal 63.2% value is not recommended. However it is the accepted figure. Hence the table below gives the 63.2% figure. The 50% figure may be obtained by reduing the times given by approximately 10%. 90% response times can be obtained by multiplying the times given by a factor of 3. To obtain the time constants at other flow rates and for other liquids and gases, the times may be multiplied by the inverse of the ratio masses of fluids per second passing the element.

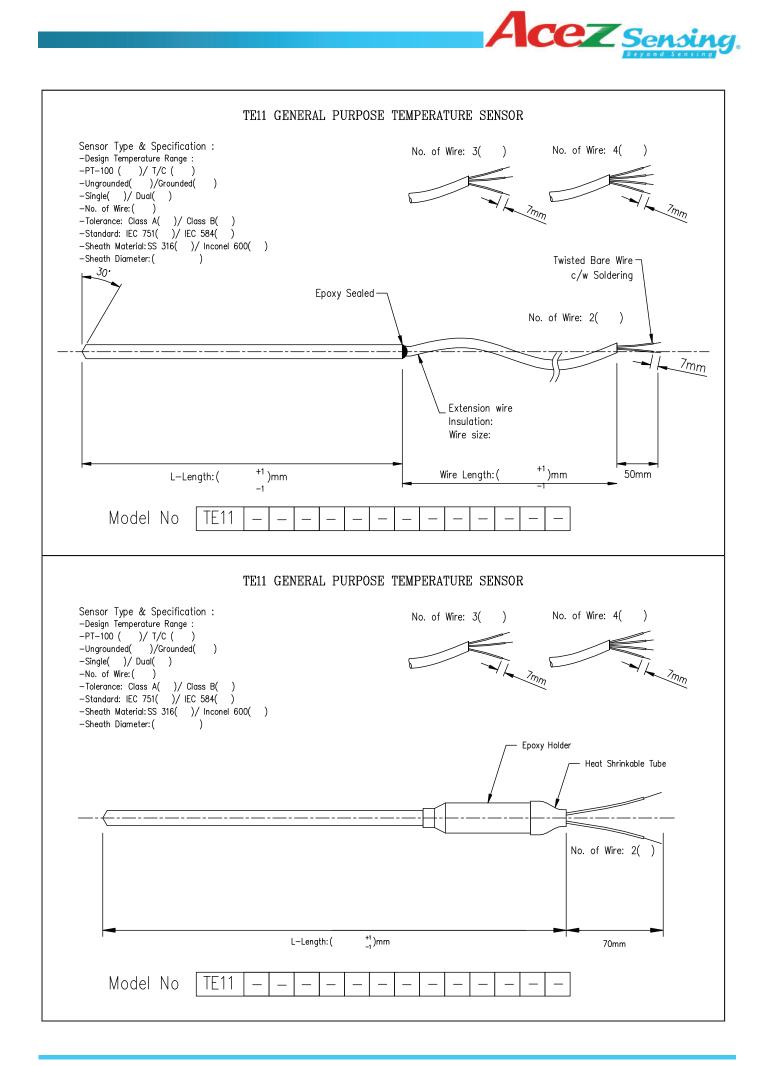
Ceramic diameter (mm)	4.5	3.2	2.8	2.4	2.0	1.6	1.5	1.2	0.9
Typical time (secs)	0.7	0.4	0.4	0.3	0.25	0.15	0.1	0.08	0.03

to 63% of final value,

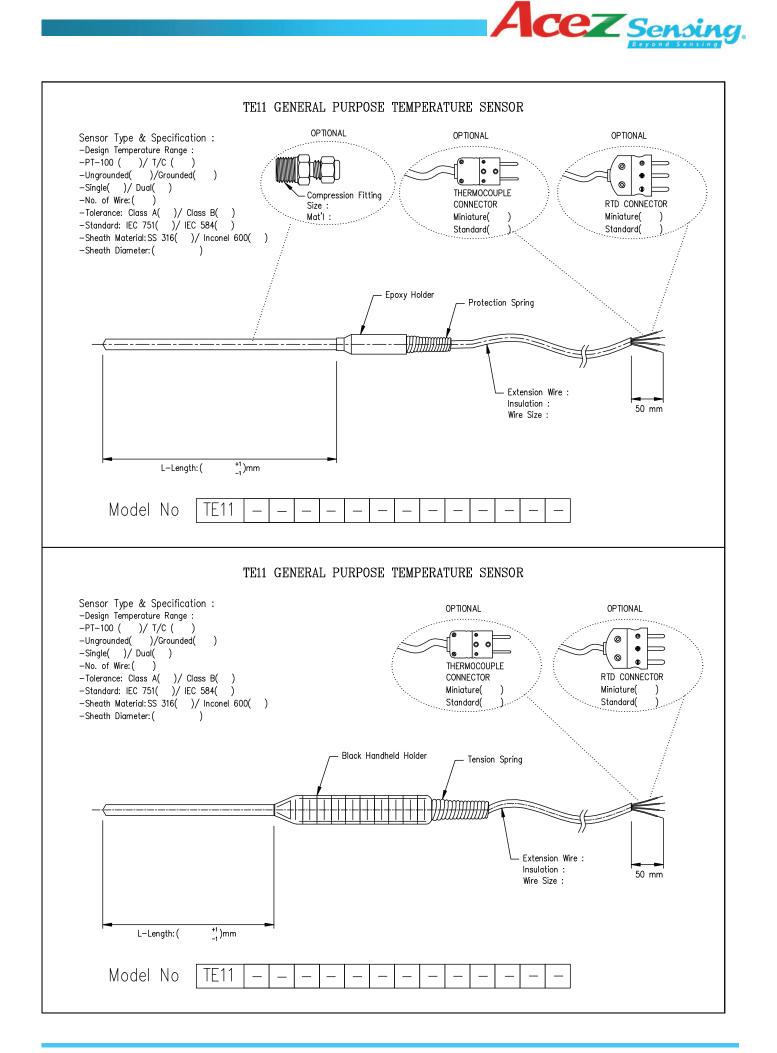
50% step, water flowing at 1m/s.

HERMETICALLY SEALED UNITS

For optimum stability, air should be allowed to circulate around the platinum coil. For this reason our detectors are not Hermetically sealed. Care must therefore be taken to pervent the ingress of moisture or gases from contaminating the detector by enclosing it in a suitable sheath. However applications have arisen where detectors have to be totally immersed; or to operate in conditions of high humidity. For special cases units can be hermetically sealed. These units are made to order only.


PT100 Temperature Conversion Table

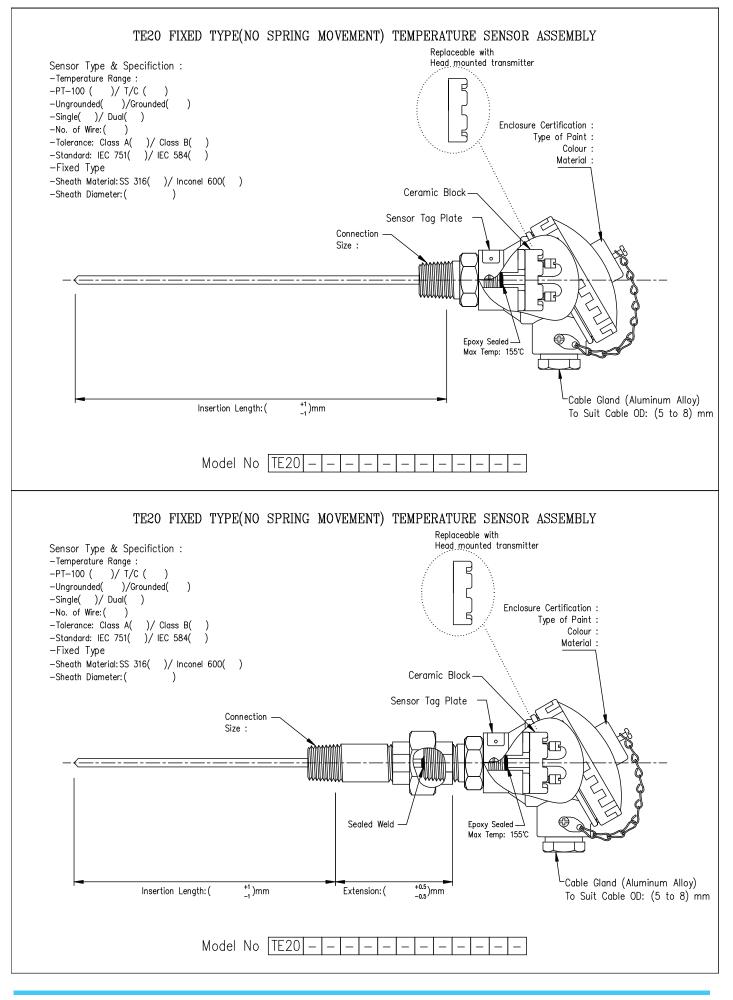
° 0	0.	° 0	01	**	0.		0.0	° 0		**	0.	**	0.0		0.
°C -50	Ohms 80.31	°C +37	Ohms 114.38	°C +124	Ohms 147.58	° C +211	Ohms 179.90	°C +298	Ohms 211.34	°C +385	Ohms 241.91	°C +482	Ohms 274.96	°C +565	Ohms 302.38
-49	80.31	+37	114.30	+124	147.95	+211	180.26	+298	211.54	+386	241.91	+483	274.90	+566	302.38
-48	81.10	+39	115.15	+126	148.33	+213	180.63	+300	212.05	+397	242.60	+484	275.63	+567	303.03
-47	81.50	+40	115.54	+127	148.71	+214	180,99	+301	212.00	+398	242.95	+485	275.96	+568	303.36
-46	81.89	+41	115.93	+128	149.08	+215	181.36	+302	212.76	+399	243.29	+486	276.31	+569	303.68
-45	82.29	+42	116.31	+129	149.46	+216	181.73	+303	213.12	+400	243.64	+487	276.64	+570	304.01
-44	82.69	+43	116.70	+130	149.83	+217	182.09	+304	213.47	+401	247.43	+488	276.97	+571	304.33
-43	83.08	+44	117.08	+131	150.21	+218	182.46	+305	213.83	+402	247.78	+489	277.31	+572	304.66
-42	83.48	+45	117.47	+132	150.58	+219	182.82	+306	214.19	+403	248.12	+490	277.64	+573	304.98
-41	83.88	+46	117.85	+133	150.96	+220	183.19	+307	214.55	+404	248.46	+491	277.98	+574	305.30
-40	84.27	+47	118.24	+134	151.34	+221	183.55	+308	214.90	+405	248.81	+492	278.31	+575	305.63
-39	84.67	+48	118.62	+135	151.71	+222	183.92	+309	215.26	+406	249.15	+493	278.64	+576	305.95
-38	85.06	+49	119.01	+136	152.09	+223	184.28	+310	215.61	+407	249.50	+494	278.98	+577	306.28
-37	85.46	+50	119.40	+137	152.46	+224	184.65	+311	215.97	+408	249.84 250.18	+495	279.31	+578	306.60
-36 -35	85.85	+51 +52	119.78 120.16	+138 +139	152.84	+225 +226	185.01	+312	216.32	+409 +410		+496 +497	279.64 279.98	+579 +580	306.92 307.25
-35	86.25 86.64	+52	120.16	+139	153.21 153.58	+226	185.38 185.74	+313 +314	216.68 217.03	+410	250.53 250.89	+497	279.98	+581	307.57
-33	87.04	+54	120.93	+140	153.95	+228	186.11	+314	217.39	+412	251.21	+499	280.64	+582	307.89
-32	87.43	+55	121.32	+142	154.32	+229	186.47	+316	217.73	+413	251.55	+500	280.98	+583	308.22
-31	87.83	+56	121.70	+143	154.71	+230	186.84	+317	218.08	+414	251.90	+501	281.31	+584	308.54
-30	88.22	+57	122.09	+144	155.08	+231	187.20	+318	218.44	+415	252.24	+502	281.64	+585	308.86
-29	88.62	+58	122.47	+145	155.46	+232	187.56	+319	218.79	+416	252.59	+503	281.97	+586	309.19
-28	89.01	+59	122.86	+146	155.83	+233	187.93	+320	219.15	+417	252.94	+504	282.31	+587	309.51
-27	89.40	+60	123.24	+147	156.21	+234	188.29	+321	219.50	+418	253.28	+505	282.64	+588	309.83
-26	89.80	+61	123.62	+148	156.58	+235	188.65	+322	219.85	+419	253.62	+506	282.97	+589	310.15
-25	90.19	+62	124.01	+149	156.96	+236	189.02	+323	220.21	+420	253.96	+507	283.30	+590	310.48
-24	90.59	+63	124.39	+150	157.33	+237	189.38	+324	220.56	+421	254.30	+508	283.63	+591	310.80
-23	90.98	+64	124.77	+151	157.71	+238	189.74	+325	220.91	+422	254.65	+509	283.97	+592	311.12
-22 -21	91.37	+65	125.17	+152	158.08	+239	190.11	+326	221.27	+423	254.99	+510	284.30	+593	311.45
	91.77	+66	125.55	+153	158.45	+240	190.47	+327	221.62	+424	255.33	+511	284.63	+594	311.78
-20	92.16	+67	125.93	+154	158.83	+241	190.83	+328	221.97	+425	255.67	+512	284.96	+595	312.10
-19 -18	92.55 92.95	+68 +69	126.32 126.70	+155 +156	159.20 159.56	+242 +243	191.20 191.56	+329 +330	222.32 222.68	+426	256.01 256.35	+513 +514	285.29 285.62	+596 +597	312.43 312.75
-17	93.34	+09	127.08	+150	159.94	+243	191.92	+331	223.03	+427	256.70	+515	285.95	+598	313.07
-17	93.34	+70	127.08	+157	160.31	+244	191.92	+331	223.03	+420	257.04	+516	285.95	+599	313.39
-15	94.12	+72	127.85	+159	160.68	+246	192.66	+333	223.73	+430	257.38	+517	286.63	+600	313.71
-14	94.52	+73	128.23	+160	161.05	+247	193.02	+334	224.09	+431	257.72	+518	286.96	+601	314.04
-13	94.91	+74	128.61	+161	161.43	+248	193.38	+335	224.45	+432	258.06	+519	287.29	+602	314.36
-12	95.30	+75	128.99	+162	161.80	+249	193.74	+336	224.80	+433	258.40	+520	287.62	+603	314.68
-11	95.69	+76	129.38	+163	162.17	+250	194.10	+337	225.15	+434	258.74	+521	287.95	+604	315.00
-10	96.09	+77	129.76	+164	162.54	+251	194.47	+338	225.50	+435	259.08	+522	288.28	+605	315.32
-9	96.48	+78	130.14	+165	162.91	+252	194.83	+339	225.85	+436	259.42	+523	288.61	+606	315.64
-8	96.87	+79	130.52	+166	163.28	+253	195.19	+340	226.21	+437	259.76	+524	288.94	+607	315.96
-7	97.26	+80	130.90	+167	163.66	+254	195.55	+341	226.56	+438	260.10	+525	289.27	+608	316.28
-6 -5	97.65 98.04	+81 +82	131.28 131.67	+168	164.03	+255	195.90	+342 +343	226.91	+439 +440	260.44	+526 +527	289.60 289.93	+609 +610	316.60 316.92
-4	98.04	+83	132.05	+169 +170	164.40 164.77	+256 +257	196.26 196.62	+343	227.26 227.61	+441	260.78 261.12	+528	289.93	+610	317.24
-4	98.83	+84	132.43	+171	165.14	+258	196,98	+345	227.96	+442	261.46	+529	290.59	+612	317.56
-2	99.22	+85	132.81	+172	165.51	+259	197.35	+346	228.31	+443	261.80	+530	290.92	+613	317.88
-1	99.61	+86	133.19	+173	165.88	+260	197.71	+347	228.66	+444	262.14	+531	291.25	+614	318.20
±0	100.00	+87	133.57	+174	166.25	+261	198.07	+348	229.01	+445	262.48	+532	291.58	+615	318.52
+1	100.39	+88	133.95	+175	166.62	+262	198.43	+349	229.36	+446	262.83	+533	291.90	+616	318.85
+2	100.78	+89	134.33	+176	167.00	+263	198.79	+350	229.72	+447	263.17	+534	292.23	+617	319.17
+3	101.17	+90	134.71	+177	167.37	+264	199.15	+351	230.07	+448	263.50	+535	292.56	+618	319.49
+4	101.56	+91	135.09	+178	167.74	+265	199.51	+352	230.42	+449	263.84	+536	292.90	+619	319.81
+5	101.95	+92	135.47	+179	168.11	+266	199.87	+353	230.77	+450	264.18	+537	293.23	+620	320.12
+6	102.34	+93	135.85	+180	168.48	+267	200.23	+354	231.12	+451	264.52	+538	293.56	+621	320.44
+7	102.73	+94	136.23	+181	168.85	+268	200.59 200.95	+355	231.47	+452	264.86	+539	293.89	+622	320.76
+8 +9	103.12 103.51	+95 +96	136.61 136.99	+182 +183	169.22 169.59	+269 +270	200.95	+356 +357	231.81 232.16	+453 +454	265.20 265.54	+540 +541	294.21 294.54	+623 +624	321.08 321.40
+10	103.90	+90	130.99	+184	169.96	+270	201.51	+358	232.16	+454	265.87	+542	294.87	+625	321.72
+11	103.30	+98	137.75	+185	170.33	+272	201.07	+359	232.86	+456	266.21	+539	294.87	+626	322.03
+12	104.68	+99	138.13	+186	170.69	+273	202.38	+360	233.21	+457	266.55	+540	294.21	+627	322.34
+13	105.07	+100	138.51	+187	171.06	+274	202.74	+361	233.56	+458	266.89	+541	294.54	+628	322.66
+14	105.46	+101	138.89	+188	171.43	+275	203.10	+362	233.91	+459	267.22	+542	294.87	+629	322.98
+15	105.85	+102	139.27	+189	171.80	+276	203.46	+363	234.26	+460	267.56	+543	295.20	+630	323.30
+16	106.24	+103	139.65	+190	172.17	+277	203.82	+364	234.60	+461	267.90	+544	295.53	+631	323.61
+17	106.63	+104	140.03	+191	172.54	+278	204.18	+365	234.95	+462	268.24	+545	295.85	+632	323.93
+18	107.02	+105	140.39	+192	172.91	+279	204.54	+366	235.30	+463	268.57	+546	296.18	+633	324.25
+19	107.40	+106	140.77	+193	173.27	+280	204.90	+367	235.65	+464	268.91	+547	296.51	+634	324.57
+20	107.79	+107	141.15	+194	173.64	+281	205.25	+368	236.00	+465	269.25	+548	296.84	+635	324.88
+21	108.18	+108	141.53	+195	174.01	+282	205.61	+369	236.35	+466	269.58	+549	297.16	+636	325.21
+22 +23	108.57 108.96	+109 +110	141.91 142.29	+196 +197	174.39 174.75	+283 +284	205.97	+370 +371	236.70	+467 +468	269.92 270.26	+550 +551	297.49 297.82	+637 +638	325.53 325.85
	108.96	+110	142.29	+197 +198	174.75	+284	206.33 206.70	+371	237.05 237.40	+468	270.26	+551	297.82	+638	325.85
		+1112	142.00	+198	175.12	+285	206.70	+372	237.40	+469	270.59	+552	298.14	+639	326.16
+24	109 73		143.42	+199	175.86	+280	207.03	+373	237.75	+470	270.93	+554	298.80	+641	326.79
+25	109.73 110.12	+11.3				+288	207.77	+375	238.44	+472	271.60	+555	299.12	+642	327.11
+25 +26	110.12	+113 +114	143.80	+201	1/6.23										
+25		+113 +114 +115	143.80 144.18	+201 +202	176.23 176.59	+289	208.13	+376	238.79	+473	271.94	+556	299.45	+643	327.43
+25 +26 +27	110.12 110.51	+114					208.13 208.48	+376 +377	238.79	+473	271.94	+556 +557	299.45 299.78	+643 +644	327.43 327.74
+25 +26 +27 +28	110.12 110.51 110.90	+114 +115	144.18	+202	176.59	+289									
+25 +26 +27 +28 +29 +30 +31	110.12 110.51 110.90 111.28 111.67 112.06	+114 +115 +116 +117 +118	144.18 144.56 144.94 145.32	+202 +203 +204 +205	176.59 176.96	+289 +290	208.48 208.84 209.20	+377	239.14	+474 +475 +476	272.27 272.61 272.95	+557 +558 +559	299.78 300.10 300.43	+644	327.74 328.06 328.38
+25 +26 +27 +28 +29 +30 +31 +32	110.12 110.51 110.90 111.28 111.67 112.06 112.45	+114 +115 +116 +117 +118 +119	144.18 144.56 144.94 145.32 145.69	+202 +203 +204 +205 +206	176.59 176.96 177.33 177.70 178.06	+289 +290 +291 +292 +293	208.48 208.84 209.20 209.55	+377 +378 +379 +380	239.14 239.48 239.83 240.18	+474 +475 +476 +477	272.27 272.61 272.95 273.28	+557 +558 +559 +560	299.78 300.10 300.43 300.75	+644 +645 +646 +647	327.74 328.06 328.38 328.69
+25 +26 +27 +28 +29 +30 +31 +32 +33	110.12 110.51 110.90 111.28 111.67 112.06 112.45 112.83	+114 +115 +116 +117 +118 +119 +120	144.18 144.56 144.94 145.32 145.69 146.07	+202 +203 +204 +205 +206 +207	176.59 176.96 177.33 177.70 178.06 178.43	+289 +290 +291 +292 +293 +293	208.48 208.84 209.20 209.55 209.91	+377 +378 +379 +380 +381	239.14 239.48 239.83 240.18 240.52	+474 +475 +476 +477 +478	272.27 272.61 272.95 273.28 273.62	+557 +558 +559 +560 +561	299.78 300.10 300.43 300.75 301.08	+644 +645 +646 +647 +648	327.74 328.06 328.38 328.69 329.01
+25 +26 +27 +28 +29 +30 +31 +32 +33 +34	110.12 110.51 110.90 111.28 111.67 112.06 112.45 112.83 113.22	+114 +115 +116 +117 +118 +119 +120 +121	144.18 144.56 144.94 145.32 145.69 146.07 146.45	+202 +203 +204 +205 +206 +207 +208	176.59 176.96 177.33 177.70 178.06 178.43 178.80	+289 +290 +291 +292 +293 +294 +294	208.48 208.84 209.20 209.55 209.91 210.27	+377 +378 +379 +380 +381 +382	239.14 239.48 239.83 240.18 240.52 240.87	+474 +475 +476 +477 +478 +479	272.27 272.61 272.95 273.28 273.62 273.95	+557 +558 +559 +560 +561 +562	299.78 300.10 300.43 300.75 301.08 301.41	+644 +645 +646 +647 +648 +649	327.74 328.06 328.38 328.69 329.01 329.32
+25 +26 +27 +28 +29 +30 +31 +32 +33	110.12 110.51 110.90 111.28 111.67 112.06 112.45 112.83	+114 +115 +116 +117 +118 +119 +120	144.18 144.56 144.94 145.32 145.69 146.07	+202 +203 +204 +205 +206 +207	176.59 176.96 177.33 177.70 178.06 178.43	+289 +290 +291 +292 +293 +293	208.48 208.84 209.20 209.55 209.91	+377 +378 +379 +380 +381	239.14 239.48 239.83 240.18 240.52	+474 +475 +476 +477 +478	272.27 272.61 272.95 273.28 273.62	+557 +558 +559 +560 +561	299.78 300.10 300.43 300.75 301.08	+644 +645 +646 +647 +648	327.74 328.06 328.38 328.69 329.01

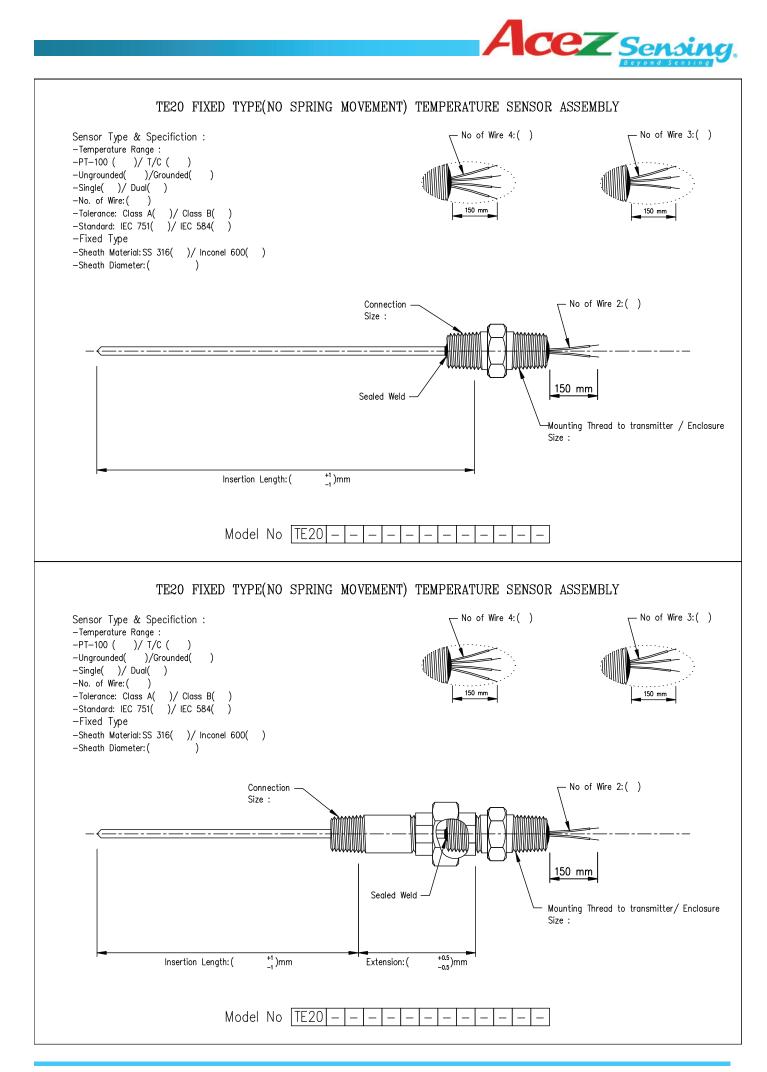


General Purpose Sensor (TE 11)

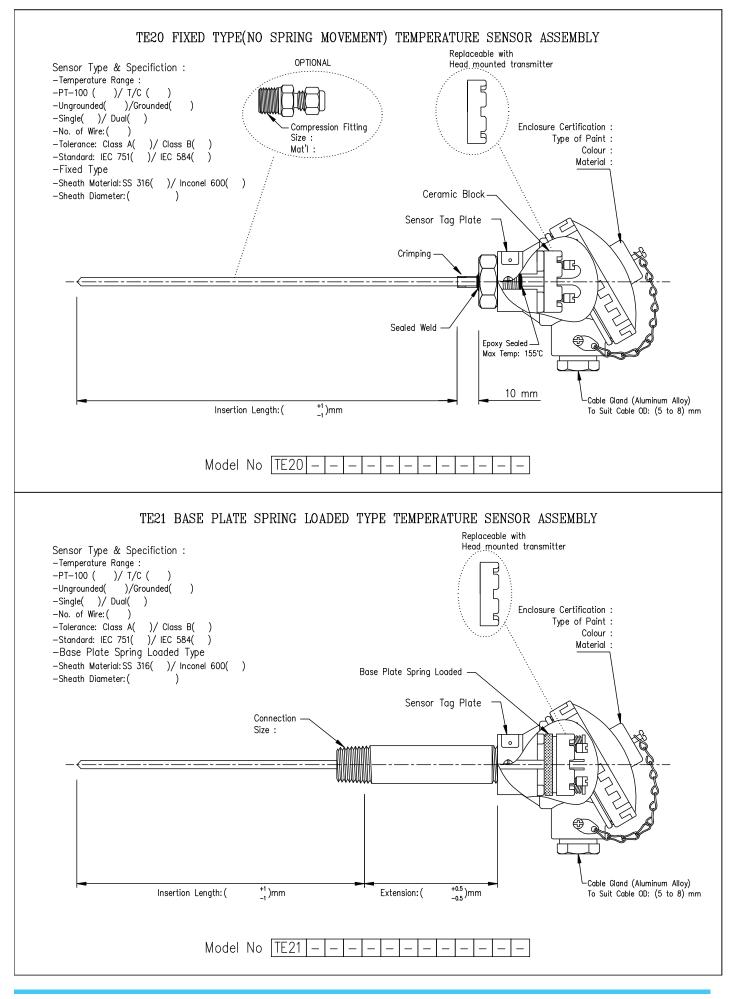
К	-	Type e K Ti	herm	ocouple	Э					Standard Temperature Range	
	Тур	еТТ	herm	ocouple locouple locouple	e					Standard Temperature Range Standard Temperature Range Standard Temperature Range	:-200 to 350 °C
R	RT)(Re	sista		mper		Detecto d	vr)		Standard Temperature Range	
		clas:			, Thii	n Filn	n(RTD)			Note : the data for reference only , it may v	raries based on sensor type)
				heath RTD-Ø6	6 mm	-Sing	le-3 Wire	s-SS	316	Note : the data for reference only , it may v	anes based on sensor type)
				e junctio Ungrou Ground	undeo	d (St	d for RTE))			
			E	Expose		autha					
				Sheath XXXX		~	ecified (e.g 01	25 fo	125 mm long)	
							Connectio	-			
					Z 1 2	Nor Epo Epo	ie xy holde xy holde	r & pro r only'	otect	on spring* protection spring	 8 RTD, Std male connector/plug 9 RTD,Std female connector/plug 10 RTD, Miniature male connector/plug 11 RTD, Miniature female connector/plug
					4	The The The	rmocoup rmocoup rmocoup	le, St le,Sto le, M	d ma d ferr iniatu	e connector/plug ale connector/plug e male connector/plug e female connector/plug	 12 Base plate 13 Base plate with terminal block 14 Bare end* Y2 Special version, to be specified
											, , ,
							e Insulation Thermo Thermo Thermo	coupl coupl	e -T e -T	E/TE E/TE/SSOB	Y 3 Special version, to be specified L RTD - TE/TE M RTD - TE/TE/SSOB
						O P C Z	Thermo Thermo	coupl coupl	e - F e - S	/C/PVC	N RTD - FG/FG O RTD - PVC/PVC P RTD - SiR/SiR
							Extensi			th cified(e.g 0125 for 125 mm long)	1 1
								Wire Z 1 2	Nor Epo Epo	<pre>ky holder & protection spring* ky holder only*</pre>	8 RTD, Std male connector/plug 9 RTD, Std female connector/plug 10 RTD, Miniature male connector/plug
								3 4 5 6	The The	tic handheld holder, protection spring mocouple , Std male connector/plug mocouple ,Std female connector/plug mocouple , Miniature male connector/plug	 RTD, Miniature female connector/plu Base plate Base plate with terminal block Bare end*
								7		mocouple , Miniature female connector/plu tional Options	g Y 5 Special version, to be specified
									Z X1 X2	None Bayonet cap Compression fitting Flexible Amour Cable	
									Y 6	Special version, to be specified Nore than one option	
										Documents (optional) n-house Calibration Certificate {RTD,PT100 (@ 1 One Point (-25 to 500°C) 2 Two Points (-25 to 500°C)	⊇ Class A , Class B, 1/3 DIN, 1/5 DIN) , Туре К , .
										3 Three Points (-25 to 500°C) (Note : Non-Singlas / Singlas Calibratio	on report is avaliable upon request)
	1							I	L		

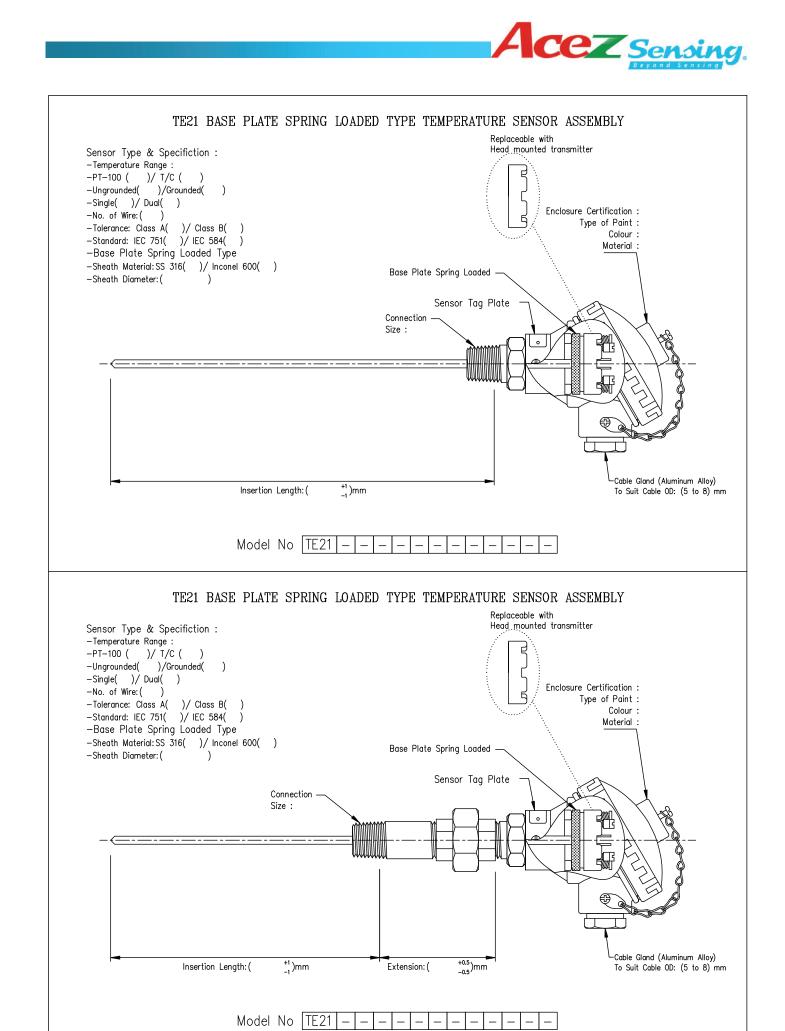
		Cez Ser	sensing.
TE11 GENERAL PU	RPOSE TEMPERATURE SE	NSOR	
Sensor Type & Specification : -Design Temperature Range : -PT-100 ()/ T/C () -Ungrounded()/Grounded() -Single()/ Dual() -No. of Wire:() -Tolerance: Class A()/ Class B() -Standard: IEC 751()/ IEC 584() -Sheath Material:SS 316()/ Inconel 600() -Sheath Diameter:()	OPTIONAL Compression Fitting Size : Mat'l :	OPTIONAL	
	/	Brass Crimping	 → B → A Male Connector (RTD)
L-Length: (+1)mm -1		
Model No TE11 - - - -			
TE11 GENERAL PUI	RPOSE TEMPERATURE SE	NSOR	
Sensor Type & Specification : -Design Temperature Range : -PT-100 ()/ T/C () -Ungrounded()/Crounded() -Single()/ Dual() -No. of Wire:() -Tolerance: Class A()/ Class B() -Standard: IEC 751()/ IEC 584() -Sheath Material:SS 316()/ Inconel 600() -Sheath Diameter:()		Base Plate Spring Loaded C/W Ceramic Block	33 mm
 	+1)mm -1)mm		

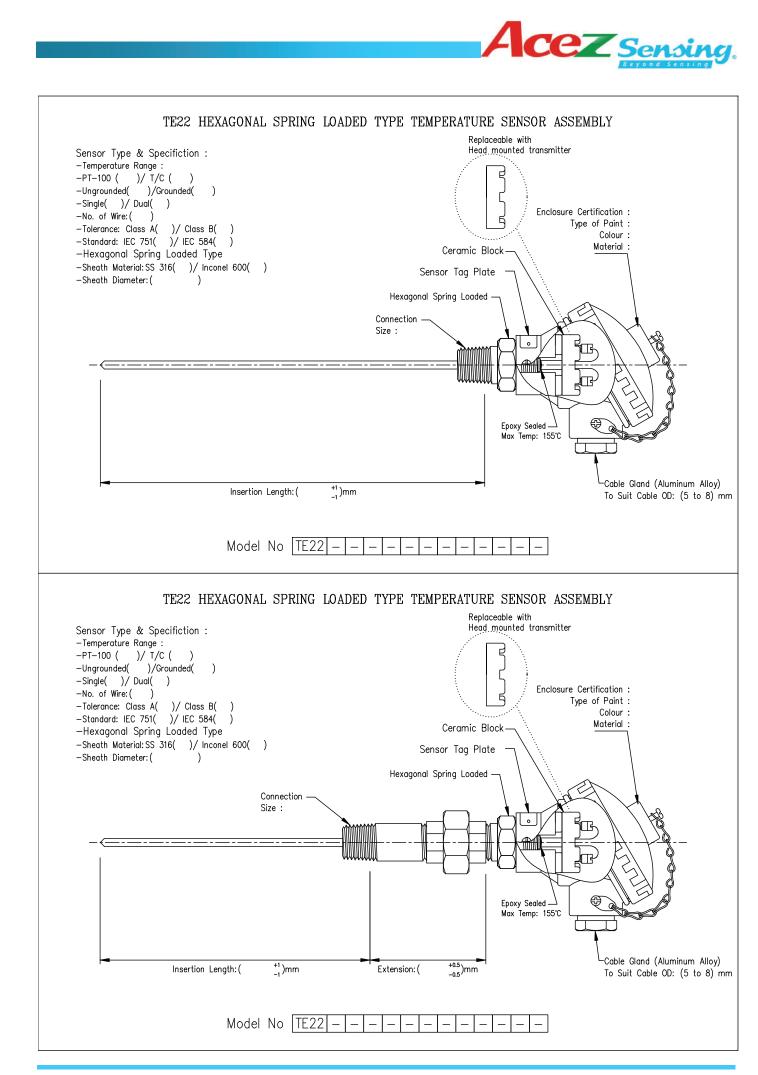




Temperature Sensor Assembly TE 20 Fixed Type (No Spring Movement) TE 21 Base Plate Spring Loaded Type TE 22 Hexagonal Spring Loaded Type


K J T E R	Typ Typ Typ RTE Spe	e KTI e J TI e T T e E T) (Re cial v eranc	herm herm herm sista version	on,tob pe	e le	fied			Standard Temperature Range: -200 to 1250 °C Standard Temperature Range: -200 to 750 °C Standard Temperature Range: -200 to 350 °C Standard Temperature Range: -200 to 900 °C Standard Temperature Range: -200 to 850 °C
			MI-F Wir U G	e juncti	<mark>ion</mark> unded (ded	-			S(Note : the data for reference only , it may varies based on sensor type)
					Housi	spec ng / I Wea Wea Wea ATE ATE CSA Trai Non Spe <u>Mou</u> P Q	Enclo ather ather ather ather X Expl X Expl	sure Proof Proof Proof Proof Proof Proof Proof Proof oblosio oblosio osion osion ers (/ersio	f(KNE), Die Cast Aluminum, Blue f(KNE), SS 316, SS Colour f(KS), Die Cast Aluminum, Blue f(KD), Die Cast Aluminum, Silver on proof, Die Cast Aluminum, Blue on proof, SS 316, SS Colour n proof, Die Cast Aluminum, Blue n proof, SS 316, SS Colour (Note : Mounting thread to be specified by customer) on to be specified ead (if it do not require the enclosure head) c/w 6" teflon lead wire (TE/TE, AWG 24) P c/w 6" teflon lead wire (TE/TE, AWG 24)
						R Y 5	Spec Extended 1 2 3 Z	nsion 30mn 75mn 150m None Spec	<pre>itional Options None Compression fitting Special version, to be specified Documents (Optio]nal) In-house Calibration Certificate {RTD,PT100 (@ Class A, Class B, 1/3 DIN, 1/5 DIN) , Type K, J, 1 One Point (-25 to 500°C) 2 Two Points (-25 to 500°C) 3 Three Points (-25 to 500°C)</pre>
X									(Note : Non-Singlas / Singlas Calibration report is available upon request)





Ex designation

Temperature Class:

Gases are divided into temperature classes based on their different ignition temperatures. The electrical equipment in Group II is divided in parallel to this according to the maximum surface temperatures at which the Ex-atmosphere can be reached.

Maximum	permitted	housing o	compone	nt tempera	ture of the ope	rating devices
T1	T2	Т3	Τ4	T5	T6	
450°C	300°C	200°C	135°C	100°C	85°C	

Explosion groups:

The equipment group, amongst other items, appears again in this Designation Section. Group 1 comprises operating devices for coal mining where coal dust and methane atmospheres prevail. Group II applies to the "aboveground" areas such as chemistry, petrochemistry, mills (dusts) etc. Due to the different minimum ignition energies of the various gases, there is a further division into the categories IIA to IIC for the ignition protection classes "personal safety", "pressure resistant casing" and "sand casing"

0	ENELEC marking	Type of Gas	ignition energy/µJ
1		methane	280
1	IIA	propane	› 180
1	IIB	ethylene	60 180
	IC	hydrogen	< 60

Type of protection:

In areas where the occurrence of an explosive mixture of flammable materials and air cannot be prevented by applying primary explosion protection, special measures for the prevention of ignition sources are to be taken. For example: separation (o, q, m), exclusion (p), special mech. construction (d, e), limitation of energy (ia, ib) or other methods (s).

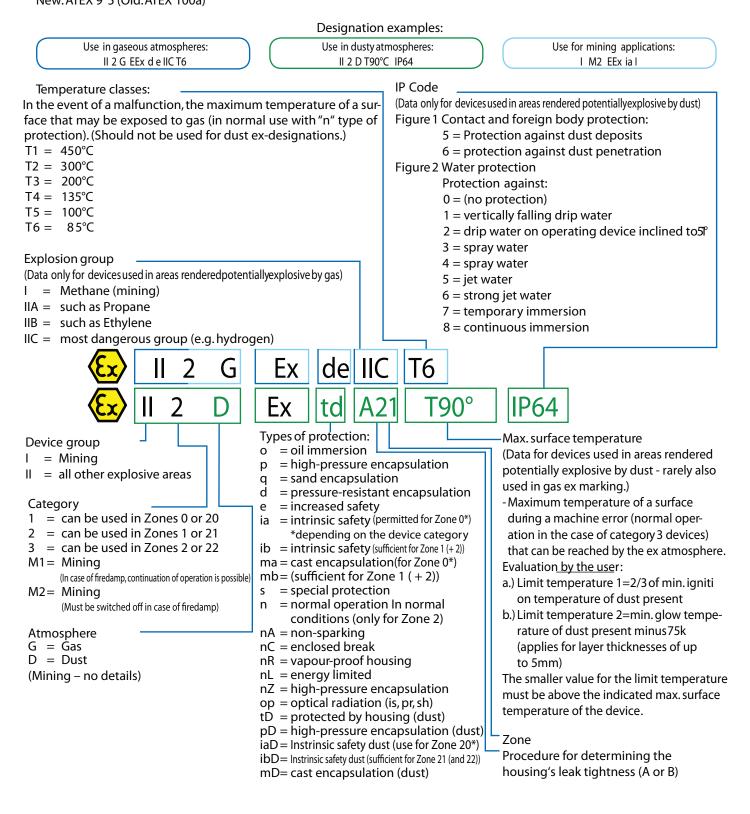
Explosion protection

Use in hazardousareas:

Equipment which are certified according to Directive 94/9/EC (ATEX 95) regulations carries a special marking. The device group appears first, then the device category and finally the atmosphere reference (G) as and (D) ust.

For category II, the following classification applies: Category 1 very high degree of safety / Safety is provided by 2 protective measures – even in cases of rarely occurring machine errors or 2 independent machine errors. Applicationin zones 0, 1, 2 or 20, 21, 22, atmosphereG/D / Category 2 high degree of safety sufficient safety in cases of frequent machine errors/ in cases of 1 error Applicationin zones 1, 2 or 21, 22, atmosphereG/D / Category 3 normal degree of safety sufficient safety in cases of failure-free operation Applicationin zone 2/22, atmosphereG/D* (*non-conductivedusts)

Mark identifying explosion prevention (required in accordance with Directive 94/9/EC)


ATEX (Atmosphere Explosive)

94/9/EC Directive

Harmonises legal provisions of member states for devices and protection systems for designated use in potentially explosive areas. New: ATEX 9 5 (Old: ATEX 100a)

1999/92/CE Directive

Minimum requirements for improving the health and safety protection of the worker at risk from explosive atmospheres. New: ATEX 1 37 (Old: ATEX 118a)

Ex-Proof (IECEx / ATEX) Temperature Sensor Assembly

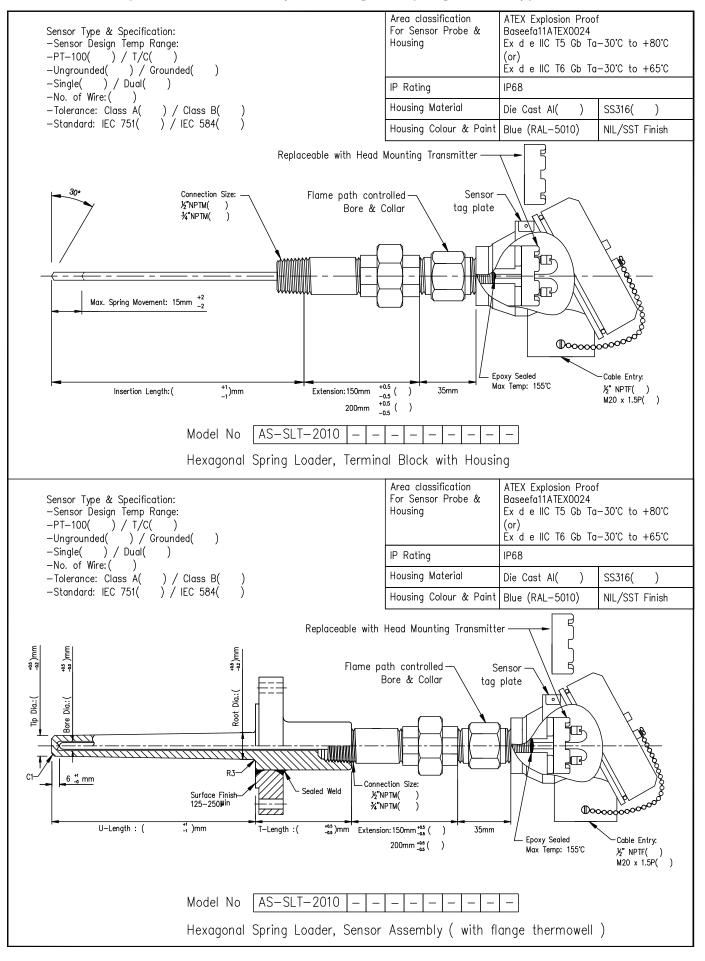
AS-SLT-2010 : Hexagonal Spring Loaded Type

AS-WT-2010 : Welded / Fixed Type

				nocoup			Standard Temperature Range: -200 to 1250 °C		
J				locoupl			Standard Temperature Range: -200 to 750 °C		
				nocoup nocoup			Standard Temperature Range: -200 to 350 °C	Standard Temperature Range: -200 to 900 °C	
				•		ure [Detector) Standard Temperature Range: -200 to 850 °C		
		•			e spec				
		eranc							
	A	Clas	sΑ,	IEC 75	1 , Thin I	Filn (F	RTD) (Note : the data for reference only, it may varies based on sensor type)		
				Sheath RTD-Ø	6 mm-S	inale	-3 Wires-SS 316 (Note : the data for reference only, it may varies based on sensor type)		
						Ŭ			
				r <mark>e junc</mark> Ungro		Std	or RTD)		
			G E	Groun Expos					
				Sheat	th lengt	h			
				XXXX	To be	spea	ified(e.g 0125 for 125 mm long)		
							E <mark>nclosure</mark> Iosion Proof (Bassefa11ATEX0024, Ex d e ⅡC T6 Gb Ta -30°C to +65°C), Die cast Aluminum , Blue	e col	
					LMT 2	Exp	losion Proof (Bassefa11ATEX0024, Ex d e IIC T6 Gb Ta -30°C to +65°C), SS316 , SS colour		
						· ·	losion Proof (Bassefa11ATEX0024, Ex d e IIC T5 Gb Ta -30°C to +80°C), Die cast Aluminum , Blue losion Proof (Bassefa11ATEX0024, Ex d e IIC T5 Gb Ta -30°C to +80°C), SS316 , SS colour) COI	
					- IME 1	- Exp	losion Proof (Bassefa11ATEX0024, Ex d e IIC T6 Gb Ta -30°C to +65°C), Die cast Aluminum , Blue	e col	
							losion Proof (Bassefa11ATEX0024, Ex d e IIC T6 Gb Ta -30°C to +65°C), SS316, SS colour		
							losion Proof (Bassefa11ATEX0024, Ex d e IIC T5 Gb Ta -30°C to +80°C), Die cast Aluminum , Blue) col	
							losion Proof (Bassefa11ATEX0024, Ex d e IIC T5 Gb Ta -30°C to +80°C), SS316 , SS colour nsmitter, Mounting Thread to be specified (Supplied by customer)		
					Z	Nor			
						Mo P	unting Thread (If it do not require the enclosure head) 1/2" NPT c/w 150 mm long teflon lead wire (TE/TE, AWG 24)		
						Q	$M20 \times 1.5 P c/w 150 mm long teflon lead wire (TE/TE, AWG 24)$		
						R	3/4" NPT c/w 150 mm long teflon lead wire (TE/TE, AWG 24)		
						Y 5	Special Version to be specified		
							(Area Classification: Exde IIC T6 Gb Ta,-30°C to +70°C)		
							(Area Classification: Exde IIC T5 Gb Ta ,-30°C to +85°C)		
							Extension nipple type 1 150mm, SS 316, 1/2"NPT Plain Nipple and Union		
			1				2 150mm, SS 316, 3/4"NPT Plain Nipple and Union		
							3 200mm, SS 316, 1/2"NPT Plain Nipple and Union		
							4 200mm, SS 316, 3/4"NPT Plain Nipple and Union Z None		
							Z None Y 6 Special version, to be specified		
							Documents (Optional)		
							In-house Calibration Certificate (RTD,PT100 (@ Class A, Class B, 1/3 DIN, 1/5 DIN), Type K, J, T 1 One Point (-25 to 500°C)	', E}	
			1				1 One Point (-25 to 500°C) 2 Two Points (-25 to 500°C)		
							3 Three Points (-25 to 500°C)		
	1								

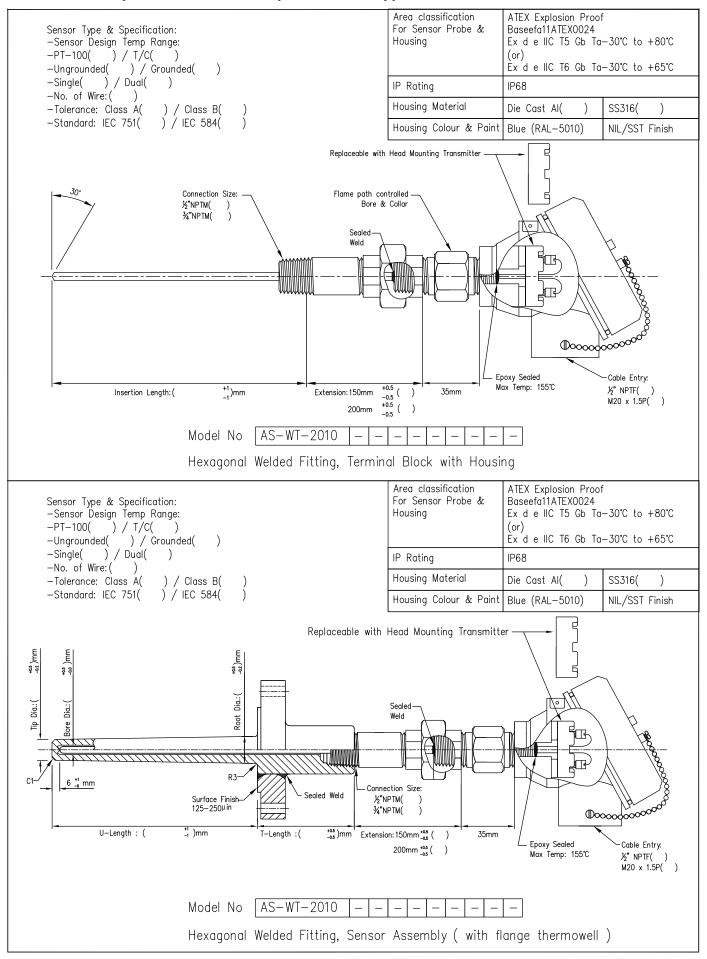
Ex-Proof Temperature Sensor Assembly (AS-SLT-2010) & (AS-WT-2010)

- IECEx/ATEX approved temperature sensor assembly suitable for use in hazardous environment such as Oil & Gas and Petrochemical industries.
- Wide range of thermowells with different materials and process connections to suit your requirements for different ranges of temperature
- Customised fabrication according to customer specifications



Area Classification for temperature housing and probes (T5)	⟨ E II 2 G Ex d e IIC T5 Gb Ta -30°C to +80°C
Area Classification for temperature housing and probes (T6)	⟨E⟩ II 2 G Ex d e IIC T6 Gb Ta -30°C to +65°C

	of Conform	OMMISSION tmospheres	_	Certificate Number Baseefa11ATEX0024	Baseefa	Issued 17 January 2013 Page 1 of 2
	IN THE SHA WEIGHS OF THE ILLOCK OWNER THE WWW.ICCEV		i	EC - TY	PE EXAMINATION CEF	TIFICATE
Certificate No	IECEx BAS 12:0057 IBSUE No.:1	Certificate history: Issue No. 1 (2013-3-13)	2	Equipment or Protectiv	v System Intended for use in Potent Directive 94/WEC	ally Explosive Atmospheres
Status:	Current	Issue No. 0 (2013-3-13)	3	BC - Type Examination Certificate Number:	Baseefa11ATEX0024	
Date of Issue:	2013-03-13 Page 1 of 4		4	Equipment or Protective System:	Temperature Housing and Probe	
35.50	TOM STATUT		5	Manufacturer:	Acce Sensing Pte Limited	
pplicant	Acez Sensing Pte Limited Bik 28E #01-04		6	Addresse	Blk 28E, 801-04, Penjuru Close, Si	ngapore, 609133
	Bik 28E, #01-04 Penjuru Close 609133		2	This equipment or protective systeetificate and the documents there	stem and any acceptable variation it rin referred to.	ereto is specified in the sebedule to this
Electrical Apparatus	Singapore Temperature Housings and Probes			1994, certifies that this equipment	it or protective system has been foun e design and construction of equipmer	he Council Directive 94/9/EC of 23 March 1 to comply with the Essential Health and t and protective systems intended for use in
Optional accessory:	competitions recommings and r records			The examination and test results a	re recorded in confidential Report No.	GB/BAS/ExTR12.0071/00.
				Compliance with the Essential Her	alth and Safety Requirements has been	assured by compliance with:
ype of Protection:	Flameproof and increased safety			EN 60079-0	E 2012 EN 60079-1: 2007	EN 68079-7: 2007
				except in respect of those requires	rents listed at item 18 of the Schedule.	
Marking:	Ex d e IIC 15 Gb Ta -30°C to + 80°C or Ex d e IIC 16 Ta -30°C to + 65°C Gb		10		certificate number, it indicates that th pecified in the schedule to this certific	e equipment or protective system is subject the.
Approved for issue on b Certification Body:		ARLES	п	equipment or protective system.	IN CERTIFICATE relates only to the Further requirements of the Directive tive system. These are not covered by	e design and construction of the specified e apply to the manufacturing process and this certificate.
Position:	General Manager		12	The marking of the equipment or p	protective system shall include the follo	owing 1
				BI 2G Exde BC TS Gb Ta	-38°C to + 80°C	
Signature: (for printed version)	T.B.enlur			This certificate may only be repro-	faced in its entirety, without any charg	e, schedule included.
Data:	-ispla 0			Haseefa Custumer Reference No. 6	5462 Pro	jest File No. 10/0121
2. This certificate is not	chedule may only be reproduced in full. transformable and remains the property of the issuing body; anticity of this certificate may be verified by visiting the Official IE	ECEx Website.	Hee	ocrificanc is granical subject to the gene orfs. It does not necessarily indicate it in particular industries or circumstances	hat the equipment may be	Pala
S	IGS Baseefs Limited Exhead Business Park Staden Lane Buston Bustonine Skr17 BPZ United Kingdom	Baseefa	- C	Baseefa Rockheid Business Park, Star Buston, Derhyshini SKIT ritighene 444 (v) 1298 Teeloo Fax e-mail <u>infortbeaseda.com</u> web skie Baseefa is a trading name d1 gistared is England Na. 4356277. Tengi	9RZ +44 (0) 1298 786601 www.baseefa.com hannels 14	R S SINCLAIR DIRECTOR On behalf of Basecla

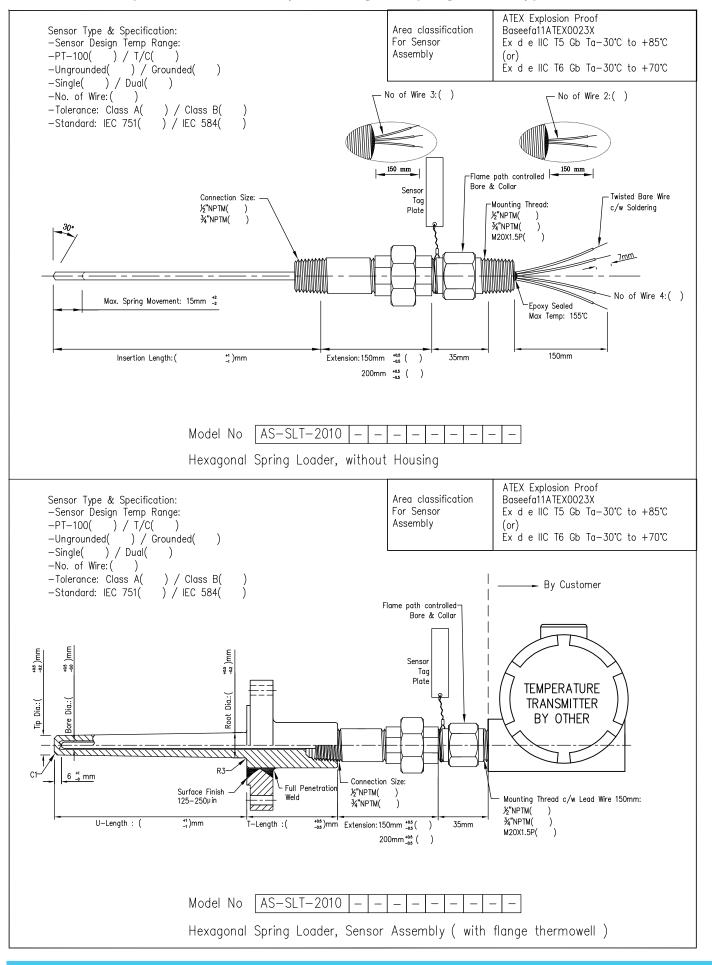


AS-SLT-2010: Ex-proof Sensor Assembly c/w Hexagonal Spring Loaded Type

AS-WT-2010: Ex-proof Sensor Assembly c/w Welded Type

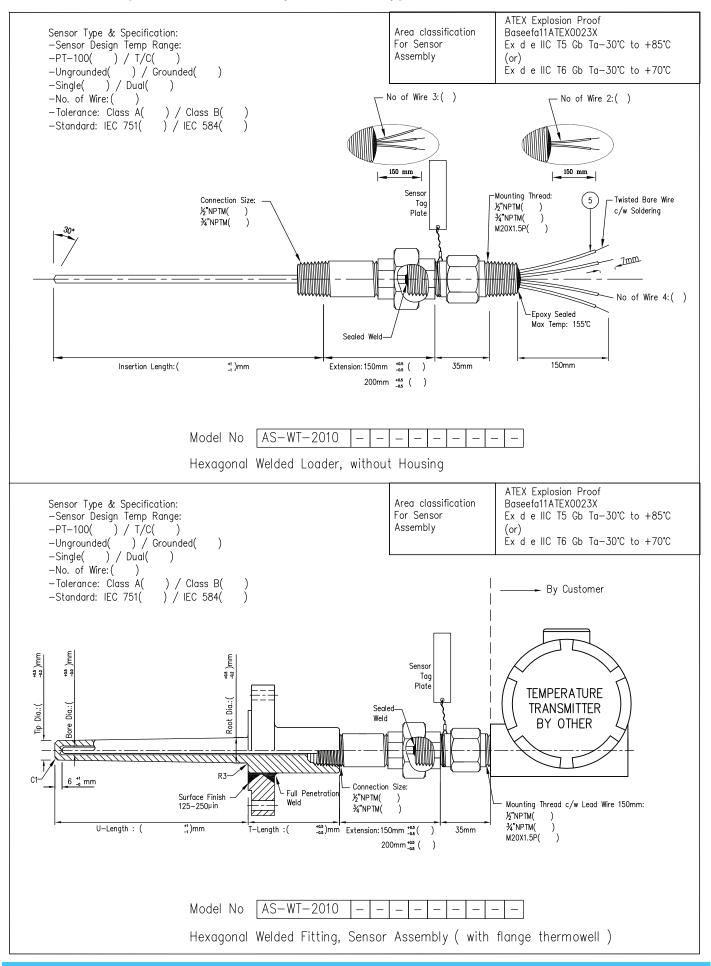
Ex-Proof Temperature Sensor Probes (AS-SLT-2010) & (AS-WT-2010)

- IECEx/ATEX approved temperature sensor probes suitable for use in hazardous environment such as Oil & Gas and Petrochemical industries.
- Wide range of thermowells with different materials and process connections to suit your requirements for different ranges of temperature
- Customised fabrication according to customer specifications

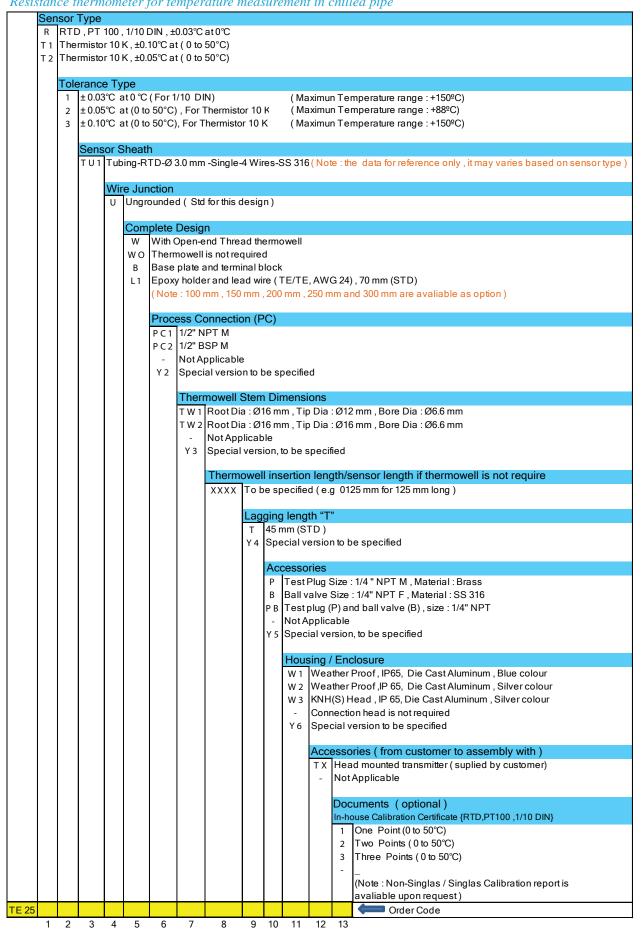


Area Classification for temperature probes (T5)	€ II 2 G Ex d e IIC T5 Gb Ta -30°C to +85°C	
Area Classification for temperature probes (T6)	€ II 2 G Ex d e IIC T6 Gb Ta -30°C to +70°C	

	RNATIONAL ELECT		OMMISSION		Certificate Number Baseefa11ATEX0023X	Baseef	a issued 17 January 2013 Page 1 of 3
IEC C		ECEx Scheme visit www.iece		1	EC - TY	PE EXAMINATION	CERTIFICATE
Certificate No.:	IECEx BAS 12.0056X	issue No.:1	Certificate history	2			otentially Explosive Atmospheres
Status:	Current		Issue No. 1 (2013-3-13) Issue No. 0 (2013-3-13)	3	EC - Type Examination Certificate Number:	Baseefal1ATEX0923X	
Date of tissue:	2013-03-13	Page 1 of 4		4	Equipment or Protective System:	Temperature Probes	
some of lookay.	A012/00/10	, alla i ora	I	5	Manufacturer:	Accz Sensing Pte Limited	
Applicant:	Acez Sensing Pte Limite	d		6	Address:	Bik 28E, #01-04, Penjuru Clo	se, Singapore. 609133
	Bik 28E, #01-04 Penjuru Close 609133			7	This equipment or protective sy certificate and the documents then	sters and any acceptable variati rin referred to.	in thereto is specified in the schedule to this
	Singapore			8	1994, certifies that this equipment	t or protective system has been e design and construction of equi	9 of the Council Directive 94/9/EC of 23 March found to comply with the Essential Health and prenet and protective systems intended for use in e.
Electrical Apparatus: Optional accessory:	Temperature Probes				The examination and test results a		
cystonii accountry.				9	Compliance with the Essential He		
Type of Protection:	Flameproof and Increased	safety			EN 60079	I-0: 2012 EN 60079-1: 2003	EN 60079-7: 2007
					except in respect of those requiren	nents listed at item 18 of the Sche	dule.
Marking:	Ex d e IIC T5 Gb Ta -30°C to or Ex d e IIC T6 Gb Ta -30°C t			10	If the sign "X" is placed after the to special conditions for safe use s		ast the equipment or protective system is subject rtificate.
Approved for Issue on I Certification Body:	behalf of the IECEx	inclair WABWOHEY		u	This EC - TYPE EXAMINATIC equipment or protective system. supply of this equipment or protect	Further requirements of the Di	to the design and construction of the specified rective apply to the manufacturing process and of by this contificate.
Position	Gene	ral Manager		12	The meeking of the equipment or p		
	2018-0-00				GII 2G Exdelic TS Go Ta	30°C to + 85°C	
Signature: (for printed version)		hitaney			This certificate may only be repro-		change, schedule included.
Date:		1604 13	_		Baseefa Caatomer Reference No. t	5462	Project File No. 10/0121
2 This certificate is not	chedule may only be reproduced transferable and remains the pr enticity of this certificate may be	operty of the issuing body.	ECEx Websile.	Res	certificate is granted subject to the gate official to does not receasarily indicate it	tat the equipment may be	26-la
Rock	S Baseefa Limited head Businoss Park Staden Lane Buston Derbyshire Sk17 9RZ Jnited Kingdom	SG	S Baseefa	and T	In particular industries of circomitance- Basseefa Rockhread Bustiness Park. Sta Buston, Dertyphire SK17 dephone +44 (0) 1298 76600 For Seasofa on trading name of U Bassofa on trading name of U gebrere in Trigonire Ne. 4006771. Toggi	den Lane, 982 +44 (0) 1298 788801 www.bapedin.com banefu Lit	R S SINCLAIR DIRECTOR On behalf of Baseefa



AS-SLT-2010: Ex-proof Sensor Assembly c/w Hexagonal Spring Loaded Type

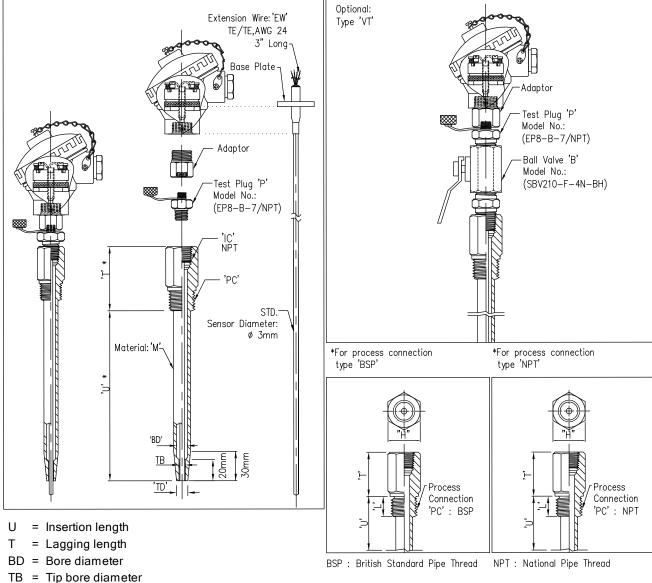


AS-WT-2010: Ex-proof Sensor Assembly c/w Welded Type

Resistance thermometer for temperature measurement in chilled pipe

Resistance thermometer for temperature measurement in chille pipe

Sensor & Opened-end thread thermowell with housing


Optional:

1) Test plug

2) Ball Valve

Assembly drawing for sensor & opened-end thread thermowell

Sensor & opened-end thread thermowell assembly with ball valve and test plug

М	=	Material
1 1 1		material

- PC = Process connection
- IC = Instrument connection
- В = Ball valve
- PC = Test plg
- L = Thread length

EW = Extension wire

Process Connection	Hex F/F Size: 'H'	Thread Length: 'L'	Process Connection	Hex F/F Size: 'H'	Thread Length: 'L'
½"BSP	28.5 mm	14 mm	½"NPT	28.5 mm	19 mm
¾"BSP	31.75 mm	16 mm	3⁄4"NPT	28.5 mm	19 mm

Process Connection,

NPT or BSP, measurement system of insertion length 'U' and lagging length 'T' will reflect upon the selected connection type.

Resistance thermometer for temperature measurement in chille pipe

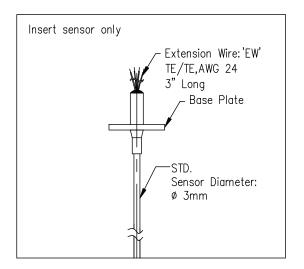
General Construction:

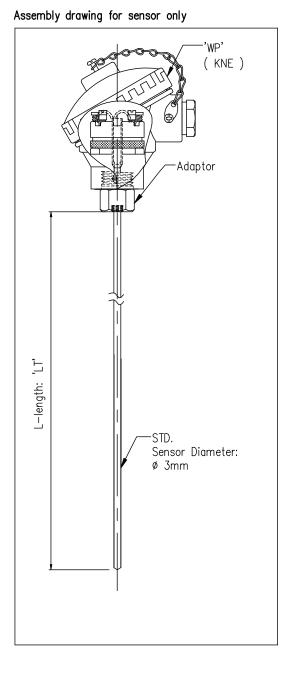
Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature by correlating the resistance of the RTD element with temperature.Convectronics' standard RTD assemblies are constructed using wire wound platinum elements with a reference resistance of 100 ohm(called as PT 100) at 0°C.

Thermistors are temperature sensors that are made from a variety of metal-oxide semiconductor materials. The semiconductor material used determines the temperature range, sensitivity and resistance ranges involved in its application.

Resistance @ +25°C=10,000 ohm(10 K**Q**) Nominal

Sensor Leadwire:


All standard RTD sensor or thermistor lead wire is stranded as Teflon insulation.Teflon insulated leads are rated at 200°C maximum.


Circuit type

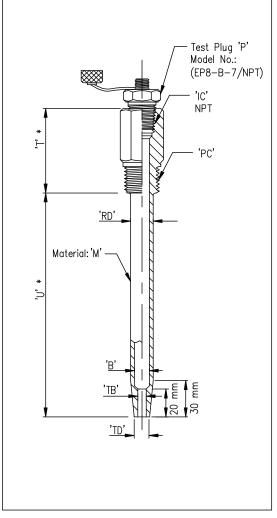
2 wires circuit for Thermistor 10 K ("+"ve , "-"ve) 4 wires circuit for RTD,PT 100, χ_0 DIN (A,A ; B,B)

Connection Head Type,

Type KNE or KNH, Weather proof Colours are available as silver or blue upon selection.

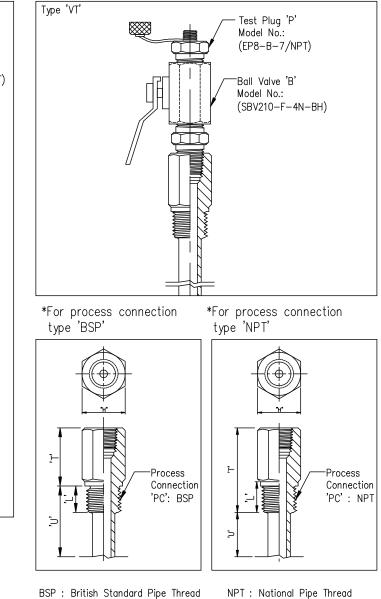
EW = Extension wire

LT = Sensor insertion length


Resistance thermometer for temperature measurement in chille pipe

Opened-end thread thermowell

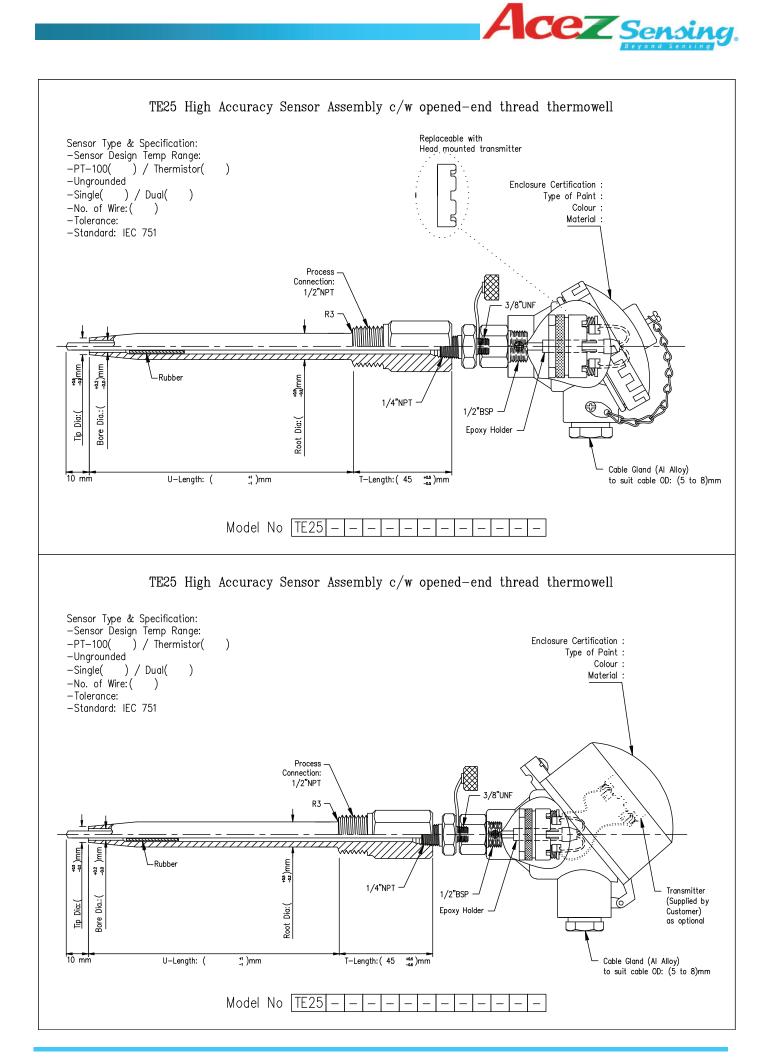
Optional:


- (1) Ball Valve
- (2) Test Plug

Assembly drawing for opened-end thread thermowell

- U = Insertion length
- T = Lagging lengťh
- B = Bore diameter
- TB = Tip bore diameter
- TD = Tip diameter
- RD = Root diameter
- M = Material
- PC = Process connection
- IC = Instrument connection
- T1 = Test plug
- L = Thread length

Opened-end thread thermowell assembly with ball valve and test plug


Process Connection	Hex F/F Size: 'H'	Thread Length: 'L'	Pı Co
½"BSP	28.5 mm	14 mm	Y ₂
¾"BSP	31.75 mm	16 mm	3/4

	•	-
rocess	Hex F/F	Thread

Process Connection	Hex F/F Size: 'H'	Thread Length: 'L'
½"NPT	28.5 mm	19 mm
¾" NPT	28.5 mm	19 mm

Process Connection,

NPT or BSP, measurement system of insertion length 'U' and lagging length 'T' will reflect upon the selected connection type.

SELECTION OF THERMOWELLS

Material

Thermowell material chosen for an installation is governed by corrosive conditions. Occasionally, the material consideration is one of strength rather than a corrosive condition. Consult the pressure-temperature ratings given for each well type for proper selection.

Insertion Length "U"

The distance from the end of the well to the underside of the thread, or other connection means, designated as "U" is the insertion length. For best accuracy, this length should be long enough to permit the entire temperature sensitive part of the thermocouple to project into the temperature medium being measured.

Bore Size

The bore size of wells shown in this catalog cover the most commonly used temperature sensing elements as follows:

Bore	Recommended Element
Diameter	Diameter
Ø 6.6	Ø 6.0
Ø 6.6 or Ø 7	Ø 6.35
Ø 8.5	Ø 8.0
Ø 10	Ø 9.5

Tapered or Straight Shank

Tapered shank wells provide greater stiffness for the same sensitivity. The hight strength-to-weight ratio gives these wells higher natural frequency than equivalent length straight shank wells, thus permitting operation at higher fluid velocity.

Velocity Ratings of Wells

Wells failures in most cases are not due to the effect of pressure and temperature. The calculations necessary to

provide adequate strength under given conditions are familiar enough to permit proper choice of wall thickness and material.

Less familiar, and more dangerous, are the vibrational effects to which wells are subjected. Fluid flowing by the well forms a turbulent wake (called the Von Karman Trail) which has definite frequency based on the diameter of the well and the velocity of the fluid. It is important that the well have sufficient stiffness so that the wake frequency will never equal the natural frequency of the well itself. If the natural frequency of the well were to coincide with the wake frequency, the well would vibrate to destruction and break off in the piping.

A recommended maximum velocity rating for typical well lengths and materials is listed in the accompanying tables. To reduce the complexity of presenting this information, the ratings given are based on operating temperatures of 1000°F for wells made of Carbon Steel (C - 1018), A.I.S.I 304 & A.I.S.I. 316. Values for brass wells are based on 350°F (177°C) operation. Limits for Monel wells are based on 900°F (482°C) service. Slightly higher velocity is possible at lower temperatures.

Where single values appear in the velocity tables, they maybe considered safe for water, steam, air or gas. In the shorter insertion lenghts, consideration is given to the velocity pressure effect of water flowing at high velocities. The values in parenthesis, therefore, represent safe values for water flow while the unbracketed value may be used for steam, air, gas and similar density fluids. The values given are conservative and intended as a guide. Wells are also safe if the resonant frequency is well below the wake frequency or if the fluid velocity is constantly fluctuating through the critical velocity point. Nevertheless, if the installation is not hampered by the use of a sufficiently stiff well, the values given should not be exceeded.

Maximum Allowable Working Pressure

Weld-In Thermowells											
MATERIAL		ORDER	0.260" BORE		0.385" BORE		TEMPERATURE RANGE				
			Wall = 0.158"/"V" = 5/8"		Wall = 0.165"/"V" = 49/64"		С		F		
ASTM SPECIFICATION	TYPE	CODE	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX	
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	-28 C	538 C	-20 F	1000 F	
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F	
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F	
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F	
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	-28 C	482 C	-20 F	900 F	
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	-28 C	538 C	-20 F	1000 F	
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F	
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	-28 C	482 C	-20 F	900 F	
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	-28 C	482 C	-20 F	900 F	
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	-28 C	425 C	-20 F	800 F	
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	-28 C	650 C	-20 F	1200 F	
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	-28 C	593 C	-20 F	1100 F	

Threaded Thermowells												
MATERIAL		ORDER CODE	STRAIGHT				STEPPED					
			0.260" BORE		0.385" BORE		0.260" BORE		TEMPERATURE RANGE			
			Wall = 0.158"/"Q" = 5/8"		Wall = 0.165"/"V" = 49/64"		Wall = 0.101"/"V" = 1/2"		с		F	
ASTM SPECIFICATION	TYPE		MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	5489 psi	2600 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	4713 psi	3792 psi	-28 C	482 C	-20 F	900 F
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	7124 psi	4309 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	7671 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	10200 psi	3934 psi	-28 C	482 C	-20 F	900 F
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	6379 psi	4607 psi	-28 C	425 C	-20 F	800 F
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	4891 psi	1162 psi	-28 C	650 C	-20 F	1200 F
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	5458 psi	3757 psi	-28 C	593 C	-20 F	1100 F
MATERIAL		ORDER	TAPERED				LIMITED SPACE		TEMPERATURE RANGE			
MATERIAL			Wall = 0.15	58"/"V" = 5/8"	Wall = 0.165"/"V" = 49/64"		Wall = 0.101"/"Q" = 1/2"		c		F	
ASTM SPECIFICATION	TYPE	CODE	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	5489 psi	2600 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	-28 C	538 C	-20 F	1000 F
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	4713 psi	3792 psi	-28 C	482 C	-20 F	900 F
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	7124 psi	4309 psi	-28 C	538 C	-20 F	1000 F
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	6238 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	7671 psi	3934 psi	-28 C	482 C	-20 F	900 F
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	10200 psi	3934 psi	-28 C	482 C	-20 F	900 F
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	6379 psi	4607 psi	-28 C	425 C	-20 F	800 F
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	4891 psi	1162 psi	-28 C	650 C	-20 F	1200 F
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	5458 psi	3757 psi	-28 C	593 C	-20 F	1100 F

These tables are for reference only. Other design factors should be taken into consideration in addition to temperature and pressure, such as vibration, corrosion, and installation method.

Maximum Allowable Working Pressure

	Socket-Weld Thermowells																
				STR	AIGHT		STEP	PED	TAPERED				TEN	IPERAT		NCE	
MATERIA	AL		0.260" BORE		0.385'	0.385" BORE		0.260" BORE		0.260" BORE		0.385" BORE		IFERAI			
	ORDER		Wall = 0.158	Wall = 0.158"/"Q" = 5/8"		Wall = 0.165"/"Q" = 49/64"		Wall = 0.101"/"V" = 1/2"		Wall = 0.158"/"V" = 5/8"		Wall = 0.165"/"V" = 49/64"		C		F	
ASTM SPECIFICATION	TYPE	CODE	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX	
A479 Gr. 304/304L	304/304L	09	7361 psi	3400 psi	6007 psi	2800 psi	5489 psi	2600 psi	7361 psi	3400 psi	6007 psi	2800 psi	-28 C	538C	-20 F	1000 F	
A479 Gr. 316/316L	316/316L	08	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F	
A479 Gr. 347	347	36	7234 psi	5200 psi	5900 psi	4200 psi	5404 psi	3800 psi	7234 psi	5200 psi	5900 psi	4200 psi	-28 C	538 C	-20 F	1000 F	
A105	A105	61	8175 psi	5062 psi	6753 psi	4259 psi	6238 psi	3934 psi	8175 psi	5062 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F	
B164 Gr. N04400	Alloy 400	27	6178 psi	4970 psi	5103 psi	4105 psi	4713 psi	3792 psi	6178 psi	4970 psi	5103 psi	4105 psi	-28 C	485 C	-20 F	900 F	
B574 Gr. N10276	Alloy C-276	29	9336 psi	5713 psi	7712 psi	4700 psi	7124 psi	4309 psi	9336 psi	5713 psi	7712 psi	4700 psi	-28 C	538 C	-20 F	1000 F	
A182 Gr. F11	F11	60	8175 psi	5156 psi	6753 psi	4259 psi	6238 psi	3934 psi	8175 psi	5156 psi	6753 psi	4259 psi	-28 C	482 C	-20 F	900 F	
A182 Gr. F22	F22	59	10266 psi	5156 psi	8374 psi	4259 psi	7671 psi	3934 psi	10266 psi	5156 psi	8374 psi	4259 psi	-28 C	482 C	-20 F	900 F	
A182 Gr. F91	F91	91	13670 psi	5156 psi	11142 psi	4259 psi	10200 psi	3934 psi	13670 psi	5156 psi	11142 psi	4259 psi	-28 C	482 C	-20 F	900 F	
B473 Gr. N08020	Alloy 20	38	8361 psi	6038 psi	6907 psi	4988 psi	6379 psi	4607 psi	8361 psi	6038 psi	6907 psi	4988 psi	-28 C	425 C	-20 F	800 F	
B166 Gr. N06600	Alloy 600	03	6410 psi	1511 psi	5295 psi	1258 psi	4891 psi	1162 psi	6410 psi	1511 psi	5295 psi	1258 psi	-28 C	650 C	-20 F	1200 F	
B408 Gr. N08800	Alloy 800	37	7153 psi	4923 psi	5909 psi	4067 psi	5458 psi	3757 psi	7153 psi	4923 psi	5909 psi	4067 psi	-28 C	593 C	-20 F	1100 F	

				Flanged	Thermo	owells						
MATERIAL			CLASS 150 CLASS 300						TEMPERATURE RANGE			
	TYPE	ORDER	CLAS	55 150	CLAS	55 300	CLAS	CLASS 600		C		F
ASTM SPECIFICATION	TYPE		MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A182 Gr. 304/304L	304/304L	09	275 psi	20 psi	720 psi	355 psi	1440 psi	710 psi	-28 C	538 C	-20 F	1000
A182 Gr. 316/316L	316/316L	08	275 psi	20 psi	720 psi	365 psi	1440 psi	725 psi	-28 C	538 C	-20 F	1000
A182 Gr. 347	347	36	275 psi	20 psi	720 psi	365 psi	1440 psi	725 psi	-28 C	538 C	-20 F	1000
A105	A105	61	285 psi	50 psi	740 psi	230 psi	1480 psi	460 psi	-28 C	482 C	-20 F	900 F
B564 Gr. N04400	Alloy 400	27	230 psi	50 psi	600 psi	275 psi	1200 psi	550 psi	-28 C	482 C	-20 F	900 F
B462 Gr. N10276	Alloy C-276	29	290 psi	20 psi	750 psi	365 psi	1500 psi	725 psi	-28 C	538 C	-20 F	1000
B462 Gr. N08020	Alloy 20	38	290 psi	80 psi	750 psi	510 psi	1500 psi	1015 psi	-28 C	425 C	-20 F	800 F
B564 Gr. N06600	Alloy 600	03	290 psi	290 psi 20 psi ^[1] 7		70 psi	1500 psi	135 psi	-28 C	650 C	-20 F	1200
B564 Gr. N08800	Alloy 800	37	275 psi	20 psi ^[1]	720 psi	325 psi	1440 psi	645 psi	-28 C	593 C	-20 F	1100
MATERIAL				0.000[3]	01 400 4500				TE	MPERAT	URE RA	NGE
	ORDER TYPE CODE		CLASS 900 ^[2]		CLASS 1500		CLASS 2500		С		F	
ASTM SPECIFICATION	TYPE		MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN TEMP	MAX TEMP	MIN	MAX	MIN	MAX
A182 Gr. 304/304L	304/304L	09	2160 psi	1065 psi	3600 psi	1770 psi	6000 psi	2950 psi	-28 C	538 C	-20 F	1000
A182 Gr. 316/316L	316/316L	08	2160 psi	1090 psi	3600 psi	1820 psi	6000 psi	3030 psi	-28 C	538 C	-20 F	1000
A182 Gr. 347	347	36	2160 psi	1090 psi	3600 psi	1820 psi	6000 psi	3030 psi	-28 C	538 C	-20 F	1000
1105	A105	61	2220 psi	690 psi	3705 psi	1150 psi	6170 psi	1915 psi	-28 C	482 C	-20 F	900 F
A105		1	po.									
B564 Gr. N04400	Alloy 400	27	1800 psi	825 psi	3000 psi	1370 psi	5000 psi	2285 psi	-28 C	482 C	-20 F	900 F
		27 29	· ·	•			5000 psi 6250 psi	2285 psi 3030 psi	-28 C -28 C	482 C 538 C	-20 F -20 F	900 I 1000
B564 Gr. N04400	Alloy 400		1800 psi	825 psi	3000 psi	1370 psi	· ·	· ·			-	
B564 Gr. N04400 B462 Gr. N10276	Alloy 400 Alloy C-276	29	1800 psi 2250 psi	825 psi 1090 psi	3000 psi 3750 psi	1370 psi 1820 psi	6250 psi	3030 psi	-28 C	538 C	-20 F	1000

[2] For NPS less than 3" a Class 1500 flange will be provided. The Class 900 flange and Class 1500 flange are dimensionally the same for this size range. For NPS 3" and 4" Class 900 or Class 1500 must be specified.

These tables are for reference only. Other design factors should be taken into consideration in addition to temperature and pressure, such as vibration, corrosion, and installation method.

Corrosive Service Guide

CORROSIVE SERVICE GUIDE TO MATERIALS FOR SHEATHS and THERMOWELLS Refer to A.S.M.E. Boiler Code, Section VIII for allowable stress levels (Teflor® coated thermowells and/or Teflor® sheaths may be substituted for all corresive agents listed)

	TEMP	TEMP	CONC	RECOM.	ths may be substituted for all CORROSIVE AGENT	TEMP	TEMP	CONC	RECOM.
	°C	°F	%	MATERIAL		°C	°F	%	MATERIAL
Acetic Acid (Glacial)	199	[390]	ALL	316 SS	Chlorine (Gas)	93	[200]	ALL	Monel®
Acetic Acid	143	[290]	80%	Hast. C®		199	[390]	ALL	316 SS ^[1]
	199	[390]	50%	316 SS	Chlorine (Gas - Moist)	66	[150]	ALL	Hast C [®]
	143	[290]	80%	Carp. 20 ^{®[1]}	Chloroacetic Acid	182	[360]	ALL	Hast. B®
Acetic Anhydride	132	[270]	ALL	Hast. C®	Chloroform	93	[200]	ALL	Nickel
•	199	[390]	ALL	316 SS ^[1]		93	[200]	ALL	Carp. 20 ^{®[1]}
Acetone	199	[390]	ALL	316 SS	Chromic Acid	93	[200]	50%	Titanium
Acetylene	199	[390]	ALL	304 SS	0	93	[200]	50%	Hast. C ^{®[1]}
Alcohol, Ethyl	93	[200]	ALL	Hast. C [®]	Citric Acid	127	[260]	ALL	Hast. C®
Aluminum Chlorida (Anusaus)	199	[390]	ALL	316 SS ^[1] Hast. B®	Coppor Chlorido	93 88	[200]	ALL	Carp. 20 ^{®[1]}
Aluminum Chloride (Aqueous)	143	[290] [290]	ALL		Copper Chloride	88	[190] [190]	ALL ALL	Titanium Hast. C ^{®[1]}
Aluminum Nitrate (Saturated)	93	[200]	ALL	446 SS	Copper Nitrate	149	[300]	ALL	304 SS
Aluminum Nillale (Saluraleu)	88	190	ALL	316 SS ^[1]	Copper Sulfate	93	[200]	ALL	Hast. C [®]
Aluminum Sulfate (Saturated)	93	[200]	ALL	Titanium	Copper Cultate	199	[390]	ALL	316 SS ^[1]
Aluminum Sunale (Saluraleu)	93	[200]	ALL	316 SS ^[1]	Corn Oil	238	[460]	ALL	TFE
Ammonia (Anhydrous)	293	[560]	ALL	316 SS		193	[380]	ALL	FEP
Ammonia (Gas)	93	[200]	ALL	304 SS		171	[340]	ALL	316 SS ^[1]
Ammonium Chloride	88	190	ALL	Titanium	Crude Oil	93	200	ALL	304 SS
	293	[560]	ALL	Nickel ^[1]	Cyanogen Gas	238	[460]	ALL	TFE
	71	[160]	50%	Nickel	-,	193	[380]	ALL	FEP
Ammonium Hydroxide	27	[80]	ALL	Steel		171	[340]	ALL	316 SS ^[1]
	82	[180]	ALL	Steel ^[1]	Ether	88	[190]	ALL	304 SS
Ammonium Nitrate	93	12001	ALL	Carp. 20®	Ethyl Acetate	93	[200]	ALL	Titanium
Ammonium Sulfate	93		SAT.	Hast. B®		199	[390]	ALL	316 SS ^[1]
	143	[200] [290]	SAT.	304 SS ^[1]	Ethyl Chloride (Dry)	293	[560]	ALL	316 SS
	93	200	10 - 40%	Titanium	Ethylene Glycol	93	[200]	ALL	
	199	390	10 - 40%	316 SS ^[1]	, ,	93	2001	ALL	Carp. 20 [®] 304 SS ^[1]
Amyl Acetate	143	[290]	ALL	304 SS	Ethylene Oxide	21	[70]	ALL	Hast. C®
Aniline	254	[490]	ALL	304 SS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	199	3901	ALL	316 SS ^[1]
Barium Chloride (Saturated)	93	[200]	ALL	Hast. C®	Fatty Acids	199	[390]	ALL	316 SS
	293	[560]	ALL	Inconel ^{®[1]}	Ferric Chloride	143	[290]	ALL	Titanium
Barium Hydroxide (Saturated)	104	[220]	50%	Carp. 20 [®] 316 SS ^[1]		27	[80]	ALL	Hast. C ^{®[1]}
	199	[390]	ALL	316 SS ^[1]	Ferric Sulfate	49	[120]	ALL	Carp. 20®
Beer	88	[190]		304 SS		88	[190]	10%	316 SS
Benzene (Benzol)	104	[220]	ALL	Carp. 20®	Ferrous Sulfate	27	[80]		Titanium
()	104	[220]	ALL	304 SS ^[1]		93	[200]	ALL	304 SS ^[1]
Benzoic Acid	199	[390]	ALL	Titanium	Formaldehyde	49	[120]	ALL	304 SS
	199	[390]	ALL	304 SS ^[1]		49-293	[120-560]	50%	304 SS ^[1]
Black Liquor	238	[460]	ALL	TFE	Formic Acid (Anhydrous)	93	[200]	50%	Carp. 20 [®]
•	193	[380]	ALL	FEP	Freon (F-11)	204	[400]	ALL	Monel®
	93	[200]	ALL	Carp. 20 ^{®[1]}		204	[400]	ALL	316 SS ^[1]
Bleach (Active Chlorine)	60	[140]	12.5%	Hast. C®	Furfural	199	[390]	ALL	Nickel
Borax	199	[390]	ALL	316 SS		199	[390]	ALL	304 SS ^[1]
Boric Acid	293	[560]	ALL	Hast. C [®]	Gallic Acid	238	[460]	ALL	TFE
	93	[200]	ALL	Nickel ^[1]		193	[380]	ALL	FEP
Brine Acid	60	[140]	ALL	Hast. C [®]		199	[390]	ALL	316 SS ^[1]
	27	[80]	ALL	Brass ^[1]	Gasoline (Unleaded)	154	[310]	ALL	Hast. C®
Bromine (Liquid)	293	[560]	ALL	Tantalum		16	[60]		446 SS
_	93	[200]	ALL	Aluminum ^[1]		171	[340]		Steel ^[1]
Butane	171	[340]	ALL	Steel		238	[460]		TFE
Butyl Acetate	93	[200]	ALL	Titanium	Gasoline (Refined)	193	[380]		FEP
	188	[370]	ALL	316 SS ^[1]		88	[190]		Steel ^[1]
Butyl Alcohol	199	[390]	ALL	316 SS		27	[80]	ALL	Nickel
Butyric Acid	143	[290]	ALL	Carp. 20®	Glucose	193	[380]	ALL	316 SS ^[1]
	199	[390]	ALL	316 SS ^[1]		27	[80]	ALL	Hast. B®
Calcium Bisulfite	93	[200]	ALL	TFE	Glue	60	[140]	ALL	Steel ^[1]
	193	[380]	ALL	FEP		127	[260]	ALL	304 SS
	171	[340]	ALL	316 SS ^[1]	Glycerine	88	[190]	50%	Titanium
Calcium Chlorate	238	[460]	ALL	TFE	Hydrobromic Acid	121	[250]	50%	Hast. B ^{®[1]}
	193	[380]	ALL	FEP		60	[140]	38%	Hast. B®
	93	[200]	ALL	316 SS ^[1]	Hydrochloric Acid	238	[460]	ALL	TFE
Calcium Chloride (Saturated)	171	[340]	ALL	Hast. C [®]	Hydrocyanic Acid	193	[380]	ALL	FEP
	93	[200]	ALL	Carp. 20 ^{®[1]}		171	[340]	ALL	316 SS ^[1]
Calcium Hydroxide	93	[200]	50%	Hast. C®	Librature florencies A. 1.1	238	[460]	ALL	TFE
	88	[190]	SAT.	304 SS ^[1]	Hydroflouric Acid	193	[380]	ALL	FEP
Carbonic Acid	293	[560]	ALL	Carp. 20®		93	[200]	ALL	Hast. C ^{®[1]}
	171	[340]	ALL	316 SS ^[1]		293	[560]	ALL	Carp. 20®
Carbon Dioxide (Dry)	427	[800]	ALL	Brass	Hydrogen Chloride (Gas, Dry)	38	[100]	ALL	304 SS
Carbonated Beverages	100	[212]	ALL	<u>304 SS</u>	Hydrogen Flouride (Dry)	199	[390]	ALL	304 SS ^[1]
Carbon Disulfide	93	[200]	ALL	Titanium		88	[190]	90%	Hast. C®
o 1 – T . 11 · · ·	199	[390]	ALL	316 SS ^[1]	Hydrogen Peroxide	71	[160]	ALL	316 SS
Carbon Tetrachloride	93	[200]	ALL	304 SS	Hydrogen Sulfide (Dry)	293	[560]	ALL	316 SS

All materials listed are rated < 2 Mils penetration/year except as noted: [1] = < 20 Mils penetration/year

Corrosive Service Guide

(coa					ection VIII for allowable streat ths may be substituted for al			listed)	
	TEMP	TEMP	CONC	RECOM.	CORROSIVE AGENT	TEMP	TEMP	CONC	RECOM.
CORROSIVE AGENT	℃	°F	%	MATERIAL		°C	°F	%	MATERIAL
	83 21	[190] [70]	ALL ALL	Hast. C Nickel	Sea Water (Cavitation) Soap Solutions	16	[60]	ALL	316 SS
	238	[460]	ALL	TFE	Suap Suluions	54	[130]	ALL	446 SS Nickel [1]
	193	[380]	ALL	FEP [1]	Sodium Bicarbonate	171	[340]	20%	316 SS
	171 32	[340] [90]	ALL	Steel ^[1] Hast. C	Sodium Bisulfite	71 93	[160] [200]	10% 10 - 40%	316 SS
Lactic Acid	127	[260]	ALL	316 SS [1]	Sodium Carbonate	93	[200]	30%	Carp. 20
	154	[310]	ALL	Titanium Hast. B [1]		293	[560]	10-100%	Carp. 20 Hast. B [1]
Lime (Sulfur)	116 238	[240]	ALL	Hast. B ^[1]	Sodium Chloride	27 71	[80]	30%	Nickol
	193	[460] [380]	ALL ALL	TFE FEP	Sodium Flouride	77	[160] [170]	ALL ALL	Monel [®]
Linseed Oil	154	[310]	ALL	316 SS ^[1]	Sodium Hydroxide	104	[220]	ALL	Carp. 20 [1] Monel [®]
	60	[140]	ALL	Carp. 20 Steel [1]		71	[160]	ALL	316 SS L
Magnesium Chloride	27 143	[80] [290]	ALL ALL	Nickel	Sodium Nitrate	171 93	[340] [200]	60%	316 SS
Magnesium Hydroxide	88	[190]	50%	Carp. 20 [1]	Sodium Nitrite	93	[200]	Saturated 40%	Titanium 304 SS [1]
Magnesium Sulfate	93	[200]	ALL	304 SS	Sodium Peroxide	16	[60]	10%	446 SS
Manauria Oblasida	93	[200]	60%	Nickel		171	[340]	10%	316 SS ^[1]
Mercuric Chloride	171 143	[340] [290]	ALL ALL	316 SS [1]	Sodium Phosphate Acid	93 93	[200] [200]	ALL ALL	Titanium 304 SS ^[1]
	77	[170]	10%	Tantalum Hast. C [1]	Sodium Silicate	27	[200]	ALL	446 SS[1]
Methyl Chloride (Dry)	293	[560]	ALL	304 SS		166	[330]	ALL	316 SS ^[1]
Methylene Chloride	171	[340]	ALL	316 SS	Sodium Sulfate	199	[390]	ALL	316 SS
	93 93	[200] [200]	ALL	Carp. 20 304 SS	Sodium Sulfide	238 193	[460] [380]	50% 50%	TFE
	16	[200]	ALL	116 55		93	[200]	50% 50%	FEP 316 SS [1]
Natural Gas	116	[240]	ALL	304 SS ^[1]	Sodium Sulfite	93	[200]	10%	304 SS
	238	[460]		TFE	Sodium Thiosulfate	16	[60]	25%	446 SS 316 SS [1]
Nickel Chloride	193 43	[380] [110]		FEP Steel ^[1]	Steam (Low Proceuro)	116	[240]	ALL	
Nickel Sulfate	93	[200]	80%	Hast. C	Steam (Low Pressure)				Inconel 304 SS [1]
	82	[180]	10%	Tantalum 304 SS [1]	(Medium Pressure)				Nickel
	93	[200]	ALL	304 SS [1]					304 55 [1]
Nitrobenzene	21 93	[70] [200]	ALL 40%	304 SS 304 SS	(High Pressure) Sulfur	293	[560]	ALL	316 SS [1]
Third Benzene	143	[290]	ALL		Sului	871	[1600]	ALL	304 SS Alloy 556
	171	[340]	ALL	Carp. 20 316 SS [1]	Sulfur Chloride (Dry)	32	[90]	ALL	Tantalum Nickel ^[1]
	138	[280]	ALL	316 SS		293	[560]	ALL	
Oxalic Acid	49 116	[120] [240]	40% ALL	Hast. C 316 SS [1]	Sulfur Dioxide (Dry)	49 293	[120] [560]	ALL ALL	Steel 316 SS [1]
	93	[200]	ALL	Tantalum	Sulfur Trioxide (Dry)	238	[460]	ALL	TFE
	93	[200]	ALL	Carp. 20 [1]		193	[380]	ALL	FFP
	271 16	[520]	ALL ALL	Tantalum	Sulfuric Acid	293 38	[560]	ALL	304 SS ^[1]
Palmitic Acid	171	[60] [340]	ALL	446 SS 316 SS [1]	Sulfulle Acia	121	[100] [250]	100% 60%	Carp. 20 Hast. B
	238	[460]	ALL	TFE	Sulfurous Acid	71	[160]	ALL	Titanium
Phonol (Corbolio Aoid)	193	[380]	ALL	FEP	Tannia Asid	177	[350]	ALL	Carp. 20 [1]
Phenol (Carbolic Acid) Phosphoric Acid	199 293	[390] [560]	ALL ALL	304 SS ^[1] 316 SS	Tannic Acid	93 93	[200] [200]	10 - 20% ALL	Titanium 304 SS [1]
Phosphoric	93	[200]	50-85%	Hast. C	Tartaric Acid	199	[390]	ALL	304 SS 111 304 SS
	43	[110]	50-85%	Carp. 20	Titanium Tetrachloride	27	[08]	ALL	Carp. 20
Phosphoric Solutions	171 27	[340] [80]	ALL	316 SS	Toluene (Toluol)	138 171	[280]	ALL	Titanium
	21	[80]	ALL ALL	Titanium Aluminum		93	[340] [200]	ALL ALL	Steel 304 SS
Potassium Bromide	199	[390]	ALL	316 SS [1]	Trichloroacetic Acid	238	[460]	ALL	TFE
Detection Carbonate	93	[200]	30%	Titanium		193	[380]	ALL	FFP
Potassium Carbonate Potassium Chlorate	93 93	[200] [200]	30% 50%	446 SS 304 SS	Trichloroethylene	93 71	[200] [160]	ALL ALL	Hast. C ^[1]
Potassium Hydroxide	171	[340]	30%	304 SS 316 SS	Turpentine	88	[190]	ALL	Inconel [®] 304 SS
Potassium Nitrate	93	[200]	50%	Nickel	Whiskey and Wine			ALL	304 SS
Potassium Permanganate	171	[340]	80%	Aluminum 446 SS [1]	Xylene (Xylol) Zinc Chloride	88	[190]	ALL	446 SS
r olassium reimanyanale	277	[530] [70]	80% 20%	Hast C.	Zinc Chloride	82 293	[180] [560]	to 70% ALL	Titanium Hast. B [1]
Potassium Sulfate	171	[340]	20%	316 SS [1]	Zinc Sulfate	93	[200]	SAT.	316 SS
	171	[340]	10%	316 SS					5.000
Pyrogallic Acid	60 27	[140] [80]	ALL	446 SS					
	27	[80]	ALL ALL	Brass Copper					
Salicylic Acid	171	[340]	ALL	Copper 316 SS [1]					
Soo Water (Sternert)	116	[240]	ALL						
Sea Water (Stagnant)	171	[340]	ALL	316 SS [1] Monel [®]					

CORROSIVE SERVICE GUIDE TO MATERIALS FOR SHEATHS and THERMOWELLS Refer to A.S.M.E. Boiler Code, Section VIII for allowable stress levels

All materials listed are rated < 2 Mils penetration/year except as noted: [1] = < 20 Mils penetration/year

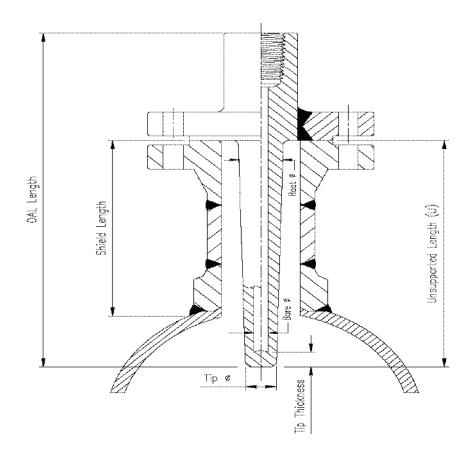
Thermowell options and specifications

The following options are avaliable on thermowells. Please contact our sales department for more info and current pricing.

Documentation/Testing	
Material Certificate	EN 10204-3.1 B
Certificate Of Conformance	Avaliable upon request
Certificate Of Compliance	Avaliable upon request
Certificate Of Origin	Avaliable upon request
Warranty Certificate	Avaliable upon request
Hydrostatic Test Report (Internal)	ASME B 16.5
Dye Penetration Test Report	ASTM E 165
Wake Frequency Calculation	ASME PTC 19.3 (2010)
NACE Hardness test	NACE MR 01-03
Post Weld Heat Treatment (PWHT)	Avaliable upon request
Positive material Identification (PMI)	ASME Section II (2010)
Magnetic Praticle Inspection Report (MPI)	ASME B 31.3 -2008 ED
Radiographic Test Report	ASME B 31.3 -2008 ED
Ultrasonic Test Report	ASME B 31.3 -2008 ED
Service	
Expedited Delivery	Avaliable upon request
Full Penetration Weld	Performed by welders certified to ASME Section IX (2010) Ed
Coatings	
Teflon Coating	Avaliable upon request
Satellite Coating (No.6)	Avaliable upon request
Painting	Avaliable upon request
Industry Specifications	
Flange thermowell	ASME B 16.5 , JIS B2220
	NACE certificate avaliable for applicable materials . Stress
Heat treating	relief , annealing , and custom heat treating avaliable upon
	request
Material	ASTM Complaince and other applicable National Standards
Pipe Threads	ANSI/ASME B1.20.1
Manufacturing Tolerances	
	Standard marking includes raw material grade , length ,
Marking	manufacture serial number ,customer tag no (if avaliable) and
	raw material heat code.
Insertion length	$_\pm$ 1 mm ($_\leq$ 1000 mm) , \pm 2 mm ($_>$ 1000 mm and < 2000 mm)
Stem Outside Diameter	+ 0.5 mm , - 0.2 mm
Bore Diameter	+ 0.2 mm , - 0.0 mm
Lagging Length	\pm 0.5 mm
Tip Thickness	₊ 1 mm , - 0.0 mm

Wake Frequency Calculation In accordance with ASME PTC-19.3-TW-2010 Version 3.0.4

Please complete the following information when requesting a wake frequency calculation Company Name


Company Name :	Contact Name :
Phone Number :	Fax Number :
E-Mail Address :	
Request Date (MM/DD/YY) :	Calculation Required By Date :

Thermowell Configuration

Unsupported Length (in),(mm)	Root Diameter (in),(mm)
Overall Length (in),(mm)	Tip Diameter (in),(mm)
Shielded Length (in),(mm)	Bore Diameter (in),(mm)
Process Connection :	Tip Thickness (in),(mm)
Flange Size/Rating :	Root Fillet (in),(mm)
Flange Facing	Material :
	Stem Style :

Process Operating Conditions

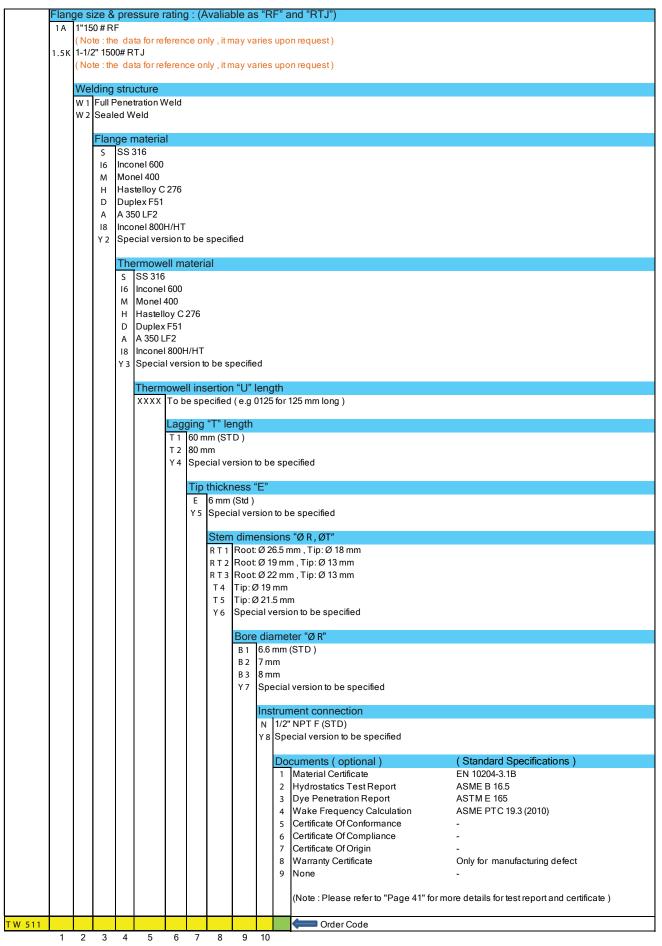
Process Fluids/Gas (water,steam,natural gas,crude oil, etc.):								
Maximum Temperature (° F),(°C) :								
Maximum Pressure (psi),(kPa)								
Velocity (ft/s),(m/s)								
Density (lb/in ³),(kg/m ³)								
Viscosity (cP)								

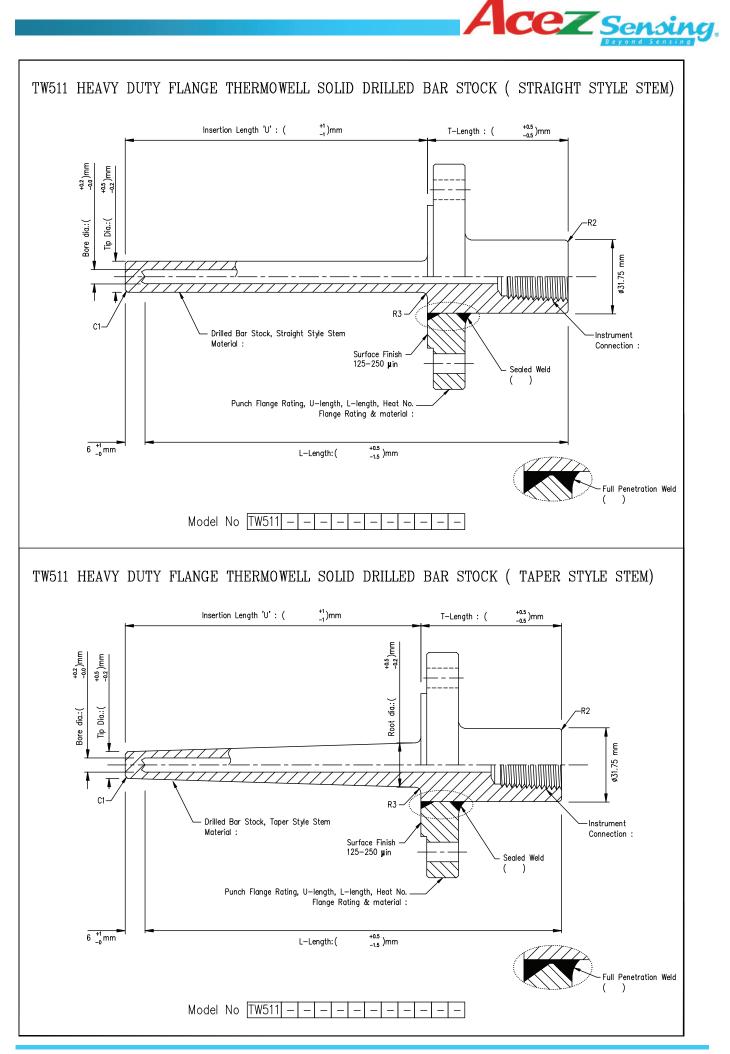
Date : Reference # :

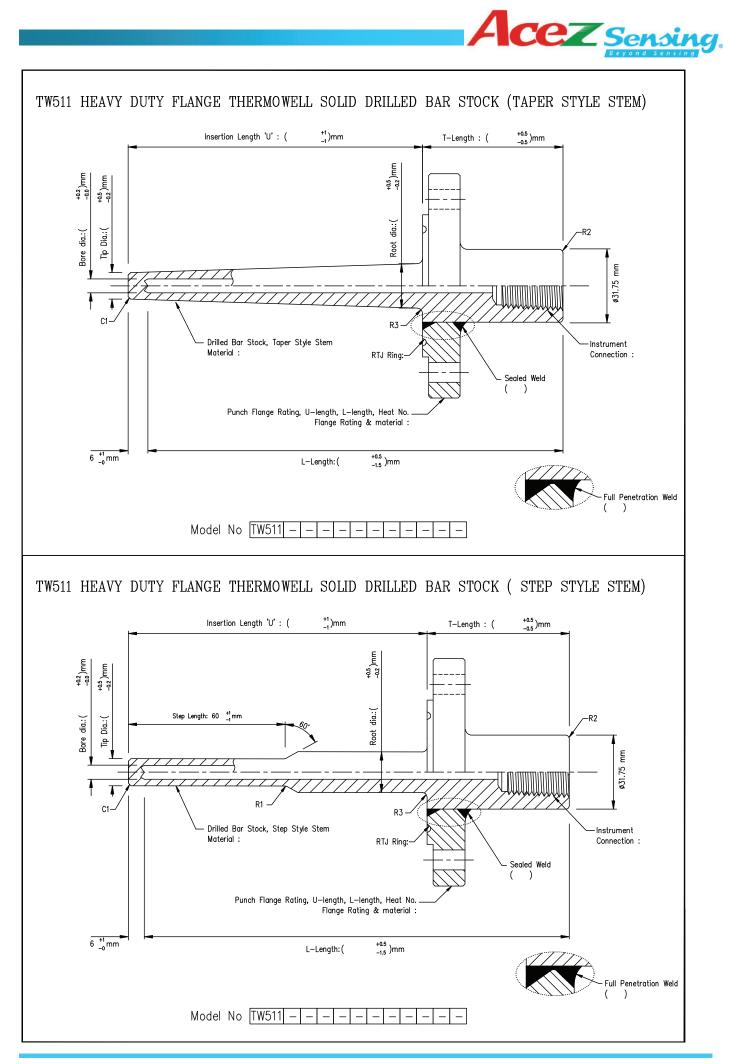
Report Information

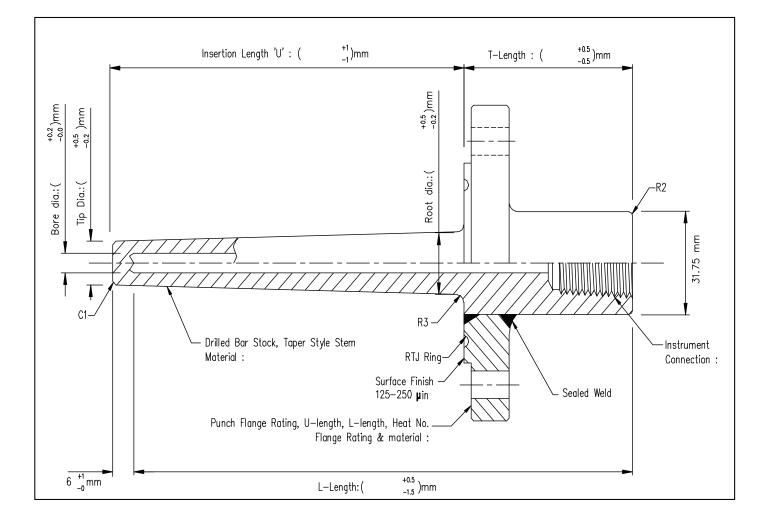
Customers: Tag Numbers:

OAL ENGTH SHIELDED LENGTH U" LENGTH	Process Fluids Max Temperature (T) Max Pressure (P) Fluid Velocity (v) Fluid Density Fluid Viscosity Thermowell Material Properties Density (Pm): Elastic Modulus, E(T): Allowable Stress(S)/Fatigue Limit (Sf): Stress (Support Plane) In-Line Reson. Velocity(VIR): Von Mises Stress(Root): Bending Stress at VIR (So.max) Dynamic Stress at V(So.max)
Thermowell ConfigurationPorces Connection:Stem Style:Thermowell Material:Flange Size I Rating:Flange FacingFlange Material:Bore Size:Overall Length(L):Unsupported Length(U):Shielded Length(L0):Lag Extension:Root Diameter(Q):Tip Diameter(B)Tip Thickness(t):Fillet(Root):	Frequency Frequency Limit: Reynolds #(Re): Frequency must be below: Strouhal #(Ns): Installed Natural Freq(fnc): Scruton #(Nsc): Strouhal Frequency (fs): Freq Ration(fs/fnc) Pressure Allowable Stem Pressure(Pc): Allowable Tip Pressure(Pt): Valve Status Valve Oscillating Stress (psi) Steady-State Stress (psi) Pressure (psi) Frequency (Hz)

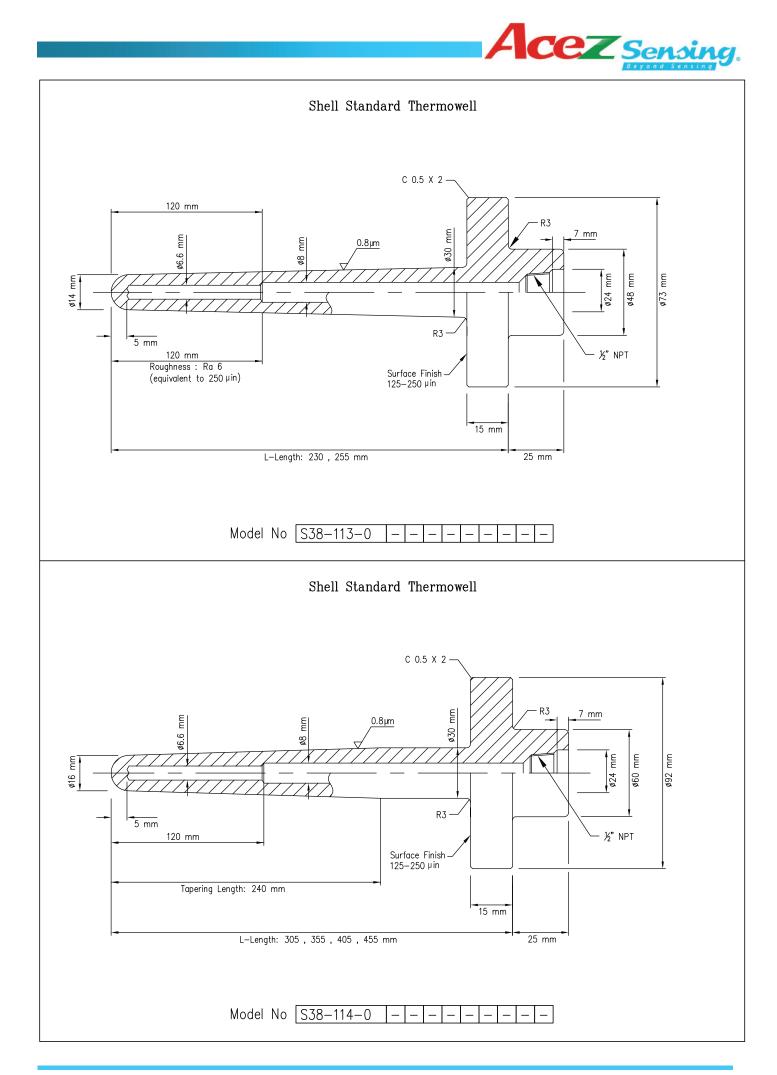

The wake frequency calculation is passed


"These well design calculations are based on the ASME PTC 19.3 TW-2010 formulas. The results of these calculations should only be used as a guide for thermowell design. The company does not guarantee the performance of a specific well design obtained from the use of these calculations".


Printed using the V-MAC Wake Calc System

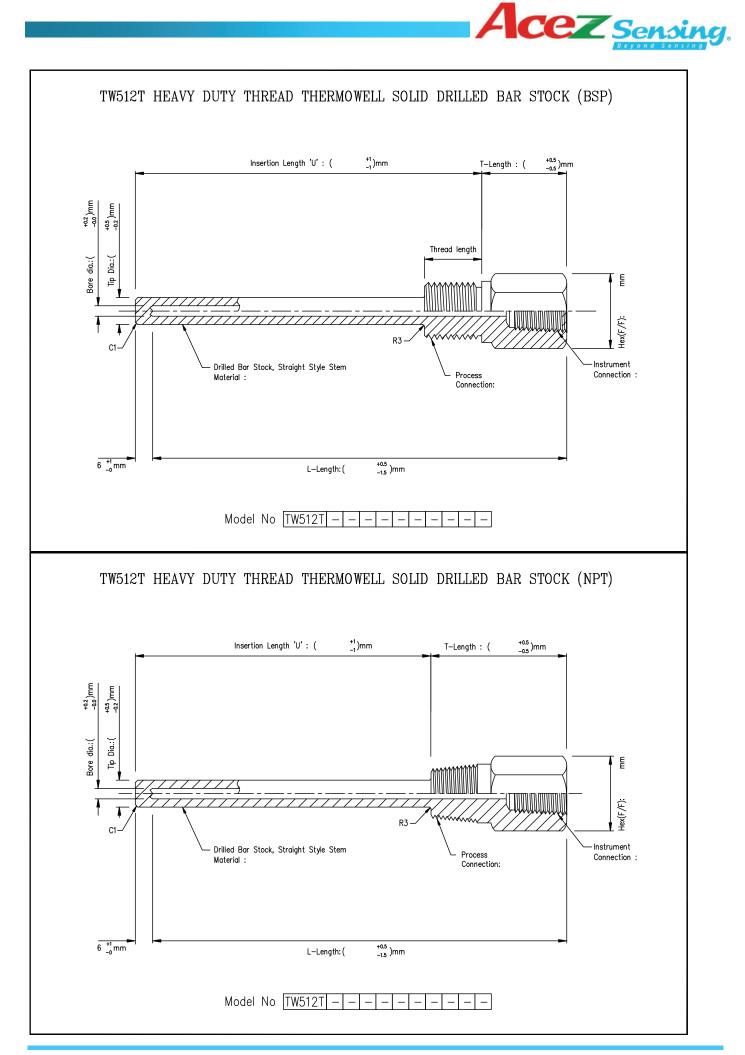

Heavy Duty Flange Thermowell -Solid Drilled Bar Stock (TW 511)

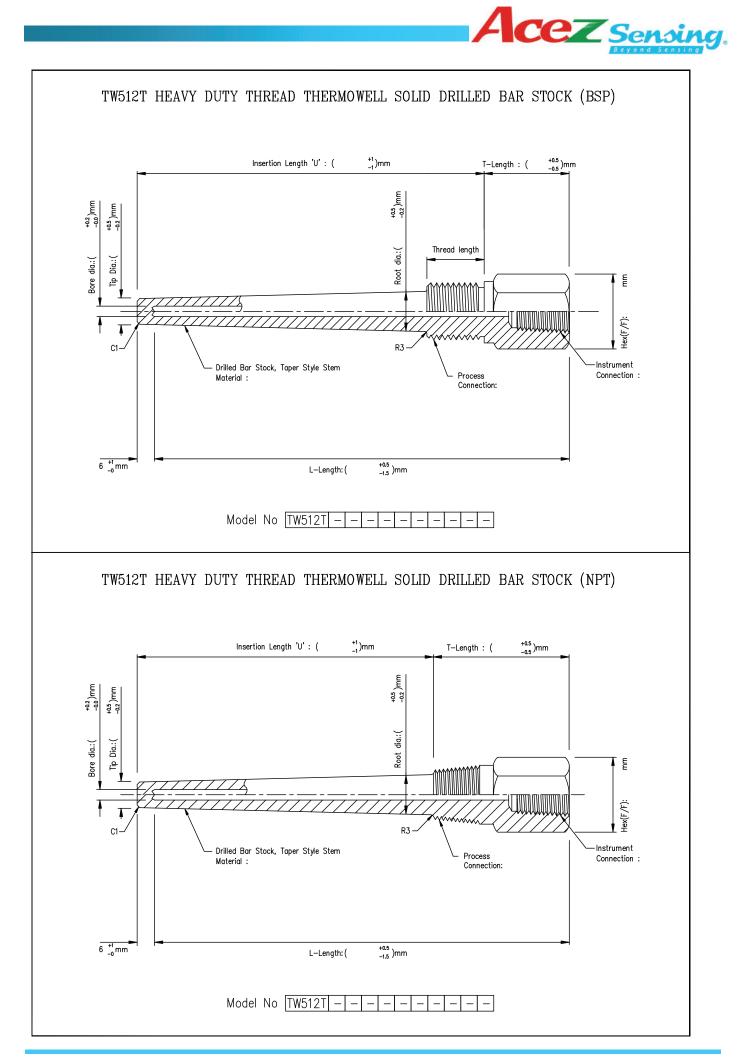
RTJ Flange Size	Root Diameter	Tip Diameter	T—Length	Ring Number	Flange S
	Class	150#		1	
1"	19 mm	13 mm	60 mm	R15	1"
1-1/2"	26.5 mm	18 mm	60 mm	R19	1-1/2
2"	26.5 mm	18 mm	60 mm	R22	2"
3"	26.5 mm	18 mm	60 mm	R29	3"
	Class	300#			
1"	19 mm	13 mm	60 mm	R16	1"
1-1/2"	26.5 mm	18 mm	60 mm	R20	1-1/2
2"	26.5 mm	18 mm	60 mm	R23	2"
	Class	600 #			
1"	19 mm	13 mm	80 mm	R16	1"
1-1/2"	26.5 mm	18 mm	80 mm	R20	1-1/2
2"	26.5 mm	18 mm	80 mm	R23	2"
	Class 900;	# & 1500#			
1-1/2"	26.5 mm	18 mm	80 mm	R20	1-1/2
2"	26.5 mm	18 mm	80 mm	R24	2"
	Class	2500#			
1-1/2"	26.5 mm	18 mm	80 mm	R23	1-1/2
2"	26.5 mm	18 mm	80 mm	R26	2"

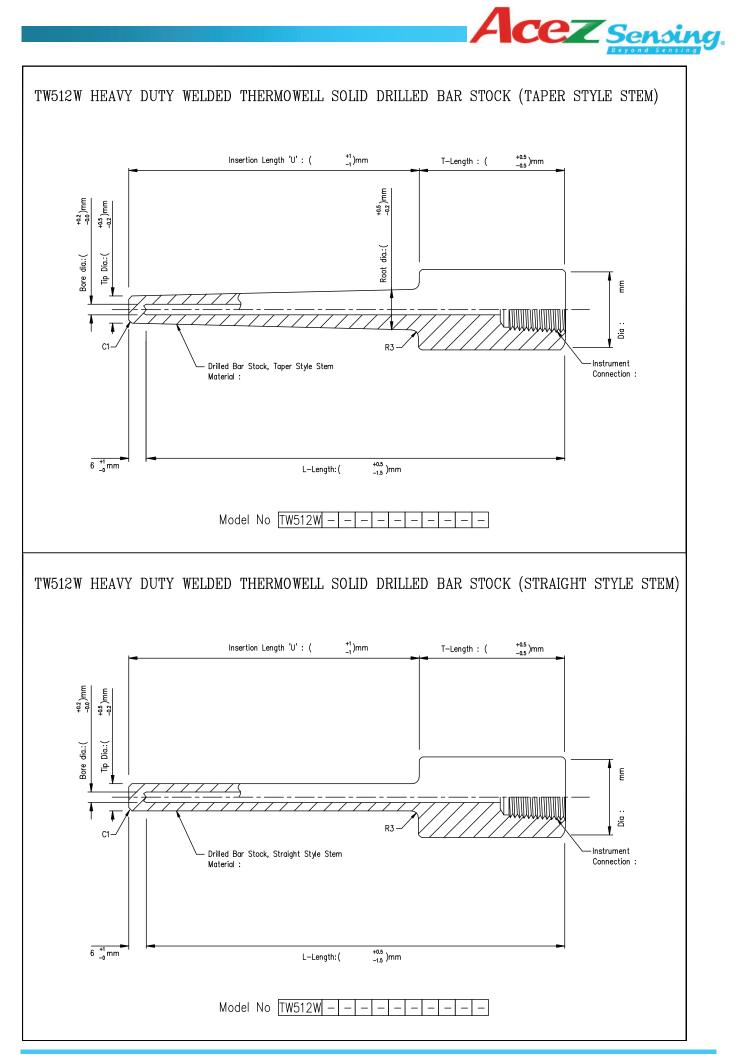

(For RF)

Flange Size	Root Diameter	Tip Diameter	T-Length							
	Class 150#									
1"	19 mm	13 mm	60 mm							
1-1/2"	26.5 mm	18 mm	60 mm							
2"	26.5 mm	18 mm	60 mm							
3"	26.5 mm	18 mm	60 mm							
	Class	300#								
1"	19 mm	13 mm	60 mm							
1-1/2"	26.5 mm	18 mm	60 mm							
2"	26.5 mm	18 mm	60 mm							
Class 600#										
1"	19 mm	13 mm	60 mm							
1-1/2"	26.5 mm	18 mm	60 mm							
2"	26.5 mm	18 mm	60 mm							
	Class 900;	# & 1500#								
1-1/2"	26.5 mm	18 mm	80 mm							
2"	26.5 mm	18 mm	80 mm							
	Class	2500 #								
1-1/2"	26.5 mm	18 mm	80 mm							
2"	26.5 mm	18 mm	80 mm							

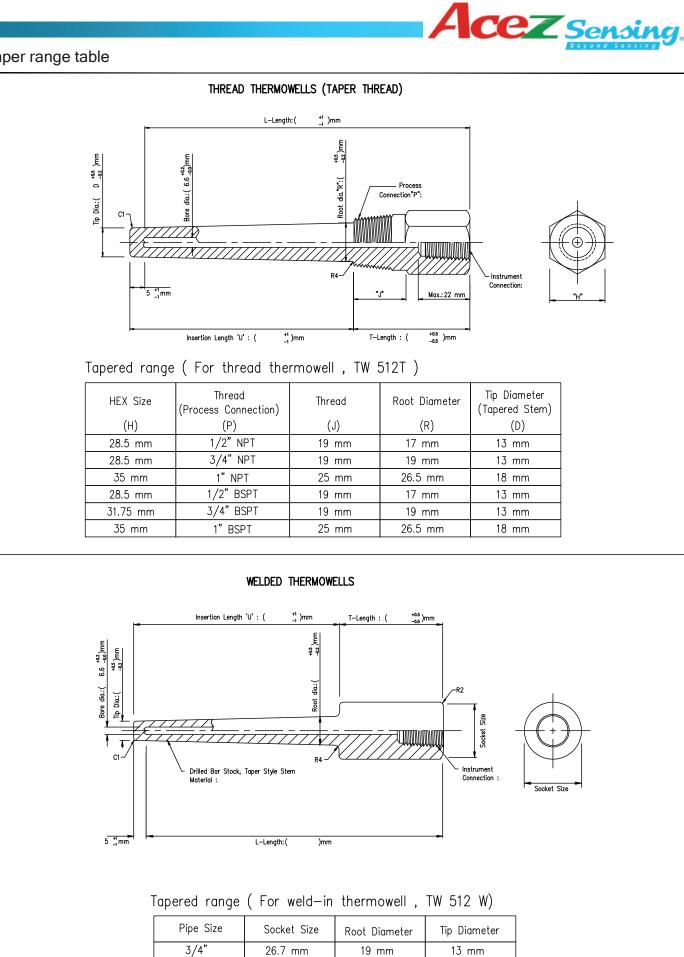
Shell Standard Thermowell


Thermowe												
S38-113-0				38-113								
						only	, it ma	y varie	es up	oon request)		
S38-114-0				38-114								
	(Note	: the	data	for refer	ence	only	, it ma	y varie	es up	oon request)		
	Conn	ootio	n fla	nao oi-	-							
				nge siz			יבי					
				1/2"),1 1/2"),3								
				1/2"), 6								
				1/2"),9				(КГ)				
	4673	5 DN40 (1-1/2"), 2500 # LJF (RF) (Note : the data for reference only, it may varies upon request)										
		(now two data for following , it may varies upon request)										
		L-length (mm)										
			230									
		L2 255 mm										
		L3	305	mm								
		L4 355 mm										
			405									
		L6	455	mm								
		-										
			(No	te : the	data	tor re	terenc	e only	, it r	nay varies upon request)		
			The	ermowe	ell ma	ateria	al					
				SS 316								
				Duplex								
				Monel								
			-									
				Conne			nge m	ateria	l I			
				S	SS 3							
				D	· ·	lex F						
				М	Mon	el 40	0					
				-								
					Stor	m dir	nonci	one "(2 5	R,ØT"		
										Ø14 mm , Step Bore: Ø8mm ∼ Ø6.5mm	(For S38-113-0)	
										Ø16 mm , Step Bore: Ø8mm ~ Ø6.5mm	(For S38-114-0)	
					-	-		,			(
						We	ll disc	dime	nsio	ons		
						D 3	Outsi	de Dia	met	er:Ø 73 mm , Thickness : 15 mm	(For S38-113-0)	
						D 5	Outsi	de Dia	met	er:Ø 92 mm , Thickness : 20 mm	(For S38-114-0)	
						-	-					
							Dava	مر م ا		" « D"		
								-		"ØB"		
							B 1	Step	Bole	e from 8 mm to 6.5 mm		
							-	-				
								Instr	ume	ent Connection		
										NPT F (STD)		
								-	-			
										cuments (Optional)	(Standard Specifications)	
										Material Certificate	EN 10204-3.1B	
										Hydrostatics Test Report	ASME B 16.5	
										Dye Penetration Report	ASTM E 165	
										Wake Frequency Calculation	ASME PTC 19.3 (2010)	
										Certificate Of Conformance	-	
										Certificate Of Compliance Certificate Of Origin	-	
										Warranty Certificate	- Only for manufacturing defect	
										None		
									"		-	
										(Note : Please refer to "Page 39" for	more details for test report and certificate)	
										,	- ,	
S38-XXX-X										Order Code		
	1	2	3	4	5	6	7	8	9			




Heavy Duty Thread Thermowell -Solid Drilled Bar Stock (TW 512T) Heavy Duty Weld in Thermowell -Solid Drilled Bar Stock (TW 512W)

2 1 3 3 4 3 5 1	/2" /4"	NPT M BSP M								
3 3 4 3 5 1	3/4" I									
4 3 5 1		льі м								
5 1	5/4 I	BSP M								
6 1	" NF	РТ М								
	" BS	SP M								
	דר צ)					
		mm (F mm (F								
		mm (F								
1 5	Spec	cial ver	rsion	to be	e speci	ified				
-	T 1									
			mowell material SS 316							
		A 350 LF2								
						pecifi	ed			
						-				
									Emmlong)	
		XXXX	101	ue sp	ecified	ı (e.g	0125	10r 12	o min long)	
			Lac	ggind	g "T" I	enat	h			
			T 1	60 m	nm (ST					
			Y 3	Spe	cial ve	rsion	to be	speci	fied	
				Tip	thick	ness	s "E"			
				Y 4	Spec	ial ve	rsion	to be s	specified	
					Stor	n dir		ione '	" AD AT "	
					R T 2	Roo	t: Ø 19	mm,	Tip: Ø 12.5 mm	
						Roo	t: Ø 17	' mm ,	Tip: Ø 12.5 mm	
					-	-	• • • • •	Diam	ator: Ø 10 mm	
					-	-				
									-	
									-	
			1	1	1					
			1	1	1				נט	
			1	1	1				rsion to be specified	
						.				
							. /	oper		
			1	1	1					(Standard Specifications)
									Material Certificate	EN 10204-3.1B
								2		ASME B 16.5
			1	1	1				-	ASTM E 165 ASME PTC 19.3 (2010)
			1	1	1			5	Certificate Of Conformance	-
								6	Certificate Of Compliance	-
			1	1	1			7	Certificate Of Origin	-
								8	Warranty Certificate	Only for manufacturing defect
			1	1	1			9	NONE	-
									(Note : Please refer to "Page 39" f	for more details for test report and certificate)
									Order Code	
		16 M H D A I8 Y 2	 Incone M Monel H Hastel D Duples A A 3501 Incone Y 2 Specia 	I6 Inconel 600 M Monel 400 H Hastelloy C D Duplex F51 A A 350 LF2 I8 Inconel 800 Y 2 Special ver Thermow XXXX To La T 1 T 2 Y 3	I6 Inconel 600 M Monel 400 H Hastelloy C 276 D Duplex F51 A A 350 LF2 I8 Inconel 800H/HT Y 2 Special version 1 XXXX To be sp T1 60m T 2 80m Y 3 Spe Tip E Y 4	I6 Inconel 600 M Monel 400 H Hastelloy C 276 D Duplex F51 A A 350 LF2 I8 Inconel 800H/HT Y 2 Special version to be s Thermovell insertion XXXX To be specified XXXX To be specified T 1 60 mm (ST T 2 80 mm Y 3 Special ver B 6 mm Y 4 Speci Tip thick E 6 mm Y 4 Speci Ster R T1 R T2 R T3 - R T4 R T5 R T6 - R T7 R T8 R T9 Y 5	I6 Inconel 600 M Monel 400 H Hastelloy C 276 D Duplex F51 A A 350 LF2 I8 Inconel 800H/HT Y 2 Special version to be specified Thermovell insertion "U XXXX To be specified (e.g. T1 60 mm (STD) T2 80 mm Y 3 Special version Tip thickness E 6 mm (Std Y 4 Special ver R T1 Roo R T2 Roo R T3 Roo R T4 Roo R T5 Roo R T6 Roo R T6 Roo R T7 Roo R T8 Roo R T9 Roo Y 5 Special B 1 B 2 B 3 Y 6	16 Inconel 600 M Monel 400 H Hastelloy C 276 D Duplex F51 A A 350 LF2 I8 Inconel 800H/HT Y 2 Special version to be specified Thermowell insertion "U" length XXXX To be specified (e.g 0125) Lagging "T" length T1 T1 60 mm (STD) T2 80 mm Y3 Special version to be Special version to be Tip thickness "E" E 6 mm (Std) Y4 Special version Stem dimens RT1 RT1 Root Ø 12 RT3 Root Ø 17 RT4 Root Ø 17 RT5 Root Ø 17 RT6 Root Ø 17 RT7 Root Ø 12 RT7 Root Ø 12 RT7 Root Ø 12 RT9 Root Ø 12 RT9 Root Ø 12 RT9 Root Ø 17 Y5 Special version B3 8 mm Y6 Spec	16 Inconel 600 M Monel 400 H Hastelloy C 276 D Duplex F51 A A 350 LF2 18 Inconel 800H/HT Y2 Special version to be specified (e.g 0125 to 12 XXXX To be specified (e.g 0125 to 12 XXX To be specified (e.g 012 to 12	16 Incomel 600 Monel 400 H Hastelloy C 276 Duplex F51 A 350 LF2 Binconel 800H/HT Y2 Special version to be specified Thermowell insertion "U" length XXXX To be specified (e.g 0125 for 125 mm long) Lagging "T" length XXXX To be specified (e.g 0125 for 125 mm long) Lagging "T" length Y3 Special version to be specified Tip thickness "E" E B dmm (StD) Y4 Special version to be specified Stem dimensions "QR , QT" RT1 Root Ø 265 mm, Tip: Ø 125 mm R T2 Root Ø 17 mm, Tip: Ø 125 mm R T4 Root Ø 17 mm, Tip: Ø 125 mm R T6 Root Ø 17 mm, Tip: Ø 125 mm R T7 Root Ø 265 mm, Tip: Ø 125 mm R T6 Root Ø 17 mm, Tip: Ø 125 mm R T7 Root Ø 17 mm, Tip: Ø 125 mm R T9 Root Ø 17 mm, Tip: Ø 125 mm R T9 Root Ø 17 mm, Tip: Ø 125 mm R T9 Root Ø 17 mm, Tip: Ø 125 mm



Taper range table

33.4 mm

42.2 mm

48.3 mm

13 mm

13 mm

13 mm

19 mm

19 mm

19 mm

1"

1-1/4"

1-1/2"

Petrochemical. HVAC& Cleanroom. Marine Industry. Pharmaceutical. **Biotechnology**. **Electronics** & Semi-conductor. Food & Beverage. Petrochemical HVAC&Cleanroom Pharmaceuti

SINGAPORE OFFICES

Acez Sensing Pte Ltd Blk 28E Penjuru Close #01-04 Singapore 609133 Tel (65) 6265 1588 Fax (65) 6264 3992 Email sales@acezsensing.com Website www.acezsensing.com

Acez Instruments Pte Ltd Blk 28D Penjuru Close #01-07 Singapore 609132 Tel (65) 6268 0100 Fax (65) 6268 7286 Email sales@acez.com.sg Website www.acez.com.sg

Showroom/Retail Outlet No. 10 Jalan Besar #B1-38 Sim Lim Tower Singapore 208787 Tel (65) 6296 3037 Fax (65) 6296 4982

Jurong Island 3 Sakra Road #01-05 OASIS@Sakra Singapore 627878 Tel (65) 6867 7600 Fax (65) 6867 7560

WHOLLY-OWNED SUBSIDIARIES

ISOLAB (Singapore) Pte Ltd Blk 28D Penjuru Close #01-07 Singapore 609132 Tel (65) 6266 6155 Fax (65) 6266 6824 Email service@isolab.com.sg Website www.isolab.com.sg

OVERSEAS OFFICES

PT Acez Instruments Indonesia JI. Mangga Besar Raya, No. 33B Mangga Besar Taman Sari, Jakarta Barat, Jakarta 11180 Indonesia Tel (+62) 21 6232 0237 / (+62) 21 6232 0238 Fax (+62) 21 6232 0236 Email sales@acez.co.id Websie www.acez.co.id

Acez Instruments (Shenzhen) Co.,Ltd 2105B Seg Plaza Huaqiang Road Futian Qu Shenzhen CHINA Tel (86) 0755 6136 2527/28 Fax (86) 0755 06136 2529 Email sales@acez.com.cn Website www.acez.com.cn

Acez Instruments Philippines Corporation Unit 301-303, DMG Center Libertad cor. Calbayog St. Mandaluyong City PHILIPPINES 1553 Tel (+63) 2 470 8068/69/71/72 Fax (+63) 2 470 8043 Email sales@acez.com.ph Website www.acez.com.ph

www.acezsensing.com